Design and Control of a Variable Geometry Hybrid Wheel-Leg

Author(s):  
Jonivan Artates ◽  
Behnam Bahr

Abstract Conventional wheeled platforms provide sufficient locomotion on smooth surfaces but are limited when contending with obstacles such as stairs, steep inclines, or rugged terrain. Legged robots, which are better suited in traversing such obstacles, require an increased number of actuators, and thereby expend more energy. This paper describes the Adaptive Wheel-Leg, AWL, that provides mobile robots with the benefits of both wheels and legs. AWL is a two degree-of-freedom, hybrid wheel-leg topology with instantaneous switching between modes. AWL provides two modes: 1) a single actuator rolling mode for smooth surfaces, and 2) a walking mode for rugged terrain. This paper presents the mechanism’s design and control methods. An experimental model and a simulation of an AWL equipped hexapod are also discussed.

2013 ◽  
Vol 837 ◽  
pp. 555-560 ◽  
Author(s):  
Alina Conduraru (Slătineanu) ◽  
Ioan Doroftei ◽  
Ionel Conduraru

In recent decades a considerable number of mobile robots with different locomotion systems have been developed. This paper is an overview on the designs of mobile robots with hybrid locomotion. Some solutions of hybrid locomotion mechanisms and control methods are presented. Most of the robots included in this category are using wheel-leg mechanisms as locomotion systems. In this way, the efficiency of the leg for moving in rough terrain is combined with the design simplicity and the low energy consumption of the wheel, when the robot is moving on structured environment.


2017 ◽  
Vol 17 (07) ◽  
pp. 1740040 ◽  
Author(s):  
HE ZHANG ◽  
RUI WU ◽  
CHANGLE LI ◽  
XIZHE ZANG ◽  
YANHE ZHU ◽  
...  

Multi-legged robots have the ability to traverse rugged terrain and can surmount the obstacles, which are impossible for being overcome by wheeled robots. In this regard, six-legged (hexapod) robots are considered to provide the best combination of adequate adaptability and control complexity. Their motion planning envisages calculating sequences of footsteps and body posture, accounting for the influence of terrain shape, in order to produce the appropriate foot-end trajectory and ensure stable and flexible motion of hexapod robots on the rugged terrain. In this study, a high-order polynomial is used to describe the trajectory model, and a new motion planning theory is proposed, which is aimed at the adaptation of hexapod robots to more complex terrains. An attempt is made to elaborate the adaptive motion planning and perform its experimental verification for a novel hexapod robot HITCR-II, demonstrating its applicability for walking on the unstructured terrain.


2021 ◽  
Vol 226 ◽  
pp. 108826
Author(s):  
Chenguang Liu ◽  
Junlin Qi ◽  
Xiumin Chu ◽  
Mao Zheng ◽  
Wei He

2021 ◽  
Vol 787 (1) ◽  
pp. 012027
Author(s):  
Yudian Li ◽  
Jiajie Dong ◽  
Kai Fei ◽  
Hao Song ◽  
Zeyi Li ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 37
Author(s):  
Vaughan Murphy ◽  
Brandon P. R. Edmonds ◽  
Ana Luisa Trejos

Twisted coiled actuators (TCAs) are a type of soft actuator made from polymer fibres such as nylon sewing thread. As they provide motion in a compact, lightweight, and flexible package, they provide a solution to the actuation of wearable mechatronic devices for motion assistance. Their limitation is that they provide low total force, requiring them to actuate in parallel with multiple units. Previous literature has shown that the force and stroke production can be improved by incorporating them into fabric meshes. A fabric mesh could also improve the contraction efficiency, strain rate, and user comfort. Therefore, this study focused on measuring these performance metrics for a set of TCAs embedded into a woven fabric mesh. The experimental results show that the stroke of the actuators scaled linearly with the number of activated TCAs, achieving a maximum applied force of 11.28 N, a maximum stroke of 12.23%, and an efficiency of 1.8%. Additionally, two control methods were developed and evaluated, resulting in low overshoot and steady-state error. These results indicate that the designed actuators are viable for use in wearable mechatronic devices, since they can scale to meet different requirements, while being able to be accurately controlled with minimal additional components.


Sign in / Sign up

Export Citation Format

Share Document