Experimental Investigation of Vibration Damping Behavior of Magneto-Mechanical Coated AISI321 Stainless-Steel

Author(s):  
Hafiz Muhammad Ashraf ◽  
Farhan Ali

Abstract High speed rotating machineries usually operate under severe conditions and enormous loadings and thus, are susceptible to several problems. One such problem that has caught the attention in recent decades is known as High Cycle Fatigue. More than 60 percent of rotating machinery failures has been attributed to this High cycle Fatigue. Along with High Cycle Fatigue, Vibration, an inherent phenomenon in machineries, also share its part in failure of rotating machineries. Rotating machinery components suffer from high amplitude vibrations when they pass through resonance. Stresses are developed as a result of these vibrations and fatigue in mechanical structures, providing a conducive environment for the development of cracks at Surface. When these surface cracks reach critical size, crack nucleation starts, which ultimately leads to catastrophic failures. So, in order to avoid the disastrous consequences, damping is needed. Damping keeps material’s integrity in case of impact forces, stresses due to thermal shocks in turbo machinery and earth quakes in huge structures. Thin layer of magneto elastic coating can be applied on substrate surface that acts as first line of defense. Large number of coating Processes are available around the globe. The optimized combination of coating material, substrate material and coating technique according to specific application is necessary. These coatings have the capability to combat the phenomenon of oxidation, wear and fatigue acting as a barrier between substrate and hostile environments. Further, they enhance the damping characteristics, and thus allows the high-speed rotating machinery to reach its operational speed without any failure at resonance. In this way, they not only enhance the performance of components in aggressive environments, but also improve the life cycle, saving assets of millions of dollars’ worth. This research is an endeavor to experimentally investigate effect of magneto mechanical coating on damping of AISI 321 Stainless steel. AISI 321 was selected as base material because of its wide applications in engine components of gas turbines, heat exchangers and in different chemical industries. Two types of Air plasma sprayed magneto-mechanical powder (NiAl & CoNiCrAlY) were coated on base material and thickness was maintained up to 250μm in both the cases. Experiments were designed and performed on cantilever beam specimens for dynamic response measurement. Dynamic response of the system was measured to investigate the modal parameters of natural frequencies, damping ratio and time of vibration decay. For damping ratio, vibration analyzer mode was adjusted in time domain and beam was excited by using a hammer. Vibration analyzer showed the vibration decay as a function of time. Logarithmic decrement method was used to calculate the damping ratio in both cases. Dynamic response of all the three cases (NiAl coating, CoNiCrAlY and uncoated AISI321) were compared. Results were very reassuring and showed a significant improvement in damping characteristics.

Author(s):  
Hafiz Muhammad Ashraf ◽  
Farhan Ali ◽  
Muhammad Imran Sadiq

Abstract High speed rotating machineries usually operate under severe conditions and enormous loadings and thus, are susceptible to several problems. One such problem that has caught the attention in recent decades is known as High Cycle Fatigue. More than 60 percent of rotating machinery failures has been attributed to this High cycle Fatigue. Along with High Cycle Fatigue, Vibration, an inherent phenomenon in machineries, also share its part in failure of rotating machineries. Rotating machinery components suffer from high amplitude vibrations when they pass through resonance. Stresses are developed as a result of these vibrations and fatigue in mechanical structures, providing a conducive environment for the development of cracks at Surface. When these surface cracks reach critical size, crack nucleation starts, which ultimately leads to catastrophic failures. So, in order to avoid the disastrous consequences, damping is needed. Damping keeps material’s integrity in case of impact forces, stresses due to thermal shocks in turbo machinery and earth quakes in huge structures. Thin layer of magneto elastic coating can be applied on substrate surface that acts as first line of defense. Large number of coating Processes are available around the globe. The optimized combination of coating material, substrate material and coating technique according to specific application is necessary. These coatings have the capability to combat the phenomenon of oxidation, wear and fatigue acting as a barrier between substrate and hostile environments. Further, they enhance the damping characteristics, and thus allows the highspeed rotating machinery to reach its operational speed without any failure at resonance. In this way, they not only enhance the performance of components in aggressive environments, but also improve the life cycle, saving assets of millions of dollars’ worth. This research is an endeavor to experimentally investigate effect of magneto mechanical coating on damping of AISI 321 Stainless steel. AISI 321 was selected as base material because of its wide applications in engine components of gas turbines, heat exchangers and in different chemical industries. Two types of Air plasma sprayed magneto-mechanical powder (NiAl & CoNiCrAlY) were coated on base material and thickness was maintained up to 250μm in both the cases. Experiments were designed and performed on cantilever beam specimens for dynamic response measurement. Dynamic response of the system was measured to investigate the modal parameters of natural frequencies, damping ratio and time of vibration decay. For damping ratio, vibration analyzer mode was adjusted in time domain and beam was excited by using a hammer. Vibration analyzer showed the vibration decay as a function of time. Logarithmic decrement method was used to calculate the damping ratio in both cases. Dynamic response of all the three cases (NiAl coating, CoNiCrAlY and uncoated AISI321) were compared. Results were very reassuring and showed a significant improvement in damping characteristics.


Author(s):  
Imran Aziz ◽  
Sajjad Hussain ◽  
Wasim Tarar ◽  
Imran Akhtar

High cycle fatigue (HCF) is the main cause of failure in rotating machinery especially in aircraft engines which results in the loss of human life as well as billions of dollars. More than 60 percent of aircraft accidents are related to High cycle fatigue. Major reason for HCF is vibratory stresses induced in the blades at resonance. Damping is needed to avoid vibratory stresses to reach the failure level. High speed rotating machinery has to pass through the resonance in order to reach the operational speed and chances of failure are high at resonance level. It is therefore required to suppress the vibrations at resonance level to avoid any damage to the structure. Application of coating to suppress vibrations is a current area of research. Various types of coatings have been studied recently. This includes plasma graded coatings, viscoelastic dampers, piezoelectric material damping, and magnetomechanical damping. In this research, the phenomenon of damping using a coating of nickel alloy on a steel beam is studied experimentally and numerically to reduce vibratory stresses by enhancing damping characteristics to avoid aircraft engine and rotating machinery failure. For this purpose, uncoated and nickel alloy coated steel beams are fabricated. The coating procedure was performed using plasma arc method. The beams were then mounted in a cantilevered position and bump and vibration shaker tests were conducted to determine the natural frequencies and mode shapes. One of the most important parameter to measure the damping of a system is the damping ratio. In order to determine the damping ratio, vibration analyzer mode was adjusted in time domain and beam was excited by using a hammer. The vibration analyzer showed the vibration decay as a function of time. Using that decay, damping ratio was calculated by using logarithmic decrement method. In order to investigate and compare the damping characteristics of un-coated and coated beams, forced response method was employed. In this method, beams were excited at 1st and 2nd bending mode natural frequencies using vibration shaker. Results were very encouraging and showed a significant improvement in damping characteristics. The experimental results were then endorsed by numerical results which were achieved by performing modal and forced response analysis using finite element analysis techniques.


2021 ◽  
Vol 147 ◽  
pp. 106180 ◽  
Author(s):  
Wei Li ◽  
Huitao Chen ◽  
Weiying Huang ◽  
Jian Chen ◽  
Lu Zuo ◽  
...  

2010 ◽  
Vol 4 (1) ◽  
pp. 94-104 ◽  
Author(s):  
Kiyotaka MASAKI ◽  
Yasuo OCHI ◽  
Takashi MATSUMURA ◽  
Takaaki IKARASHI ◽  
Yuji SANO

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xu Jia ◽  
Yang Ou Xiang ◽  
Hu Yuan Pei ◽  
Song Wei

PurposeThe investigations could guide the structural design and fatigue life prediction of air-conditioning compressor valve plates.Design/methodology/approachThe High-Cycle Fatigue (HCF) and Very-High-Cycle Fatigue (VHCF) behaviors of stainless steel used for air-conditioning compressor valve plates were investigated. Monotonic and cyclic loading conditions were designed to explore the fatigue responses according to the load characteristics of the structure.FindingsThe crack initiation can be observed as the arc-shaped cracks at both sides of specimens and Y-shaped crack bifurcation in the specimens. Moreover, the middle section and the cracks at both ends are not connected to the surface of the specimen. The stress-life results of the materials under two directions (vertical and horizontal) were provided to examine the difference in fatigue strength.Originality/valueMonotonic and cyclic loading conditions were designed to explore the fatigue responses according to the load characteristics of the structure. Based on the experimental data, the results indicate that specimens under cyclic loading conditions could demonstrate better mechanical performance than static loadings.


Sign in / Sign up

Export Citation Format

Share Document