Multiaxial high cycle fatigue of 304L stainless steel with small defects

Author(s):  
A.L. Dias ◽  
C. Bemfica ◽  
F.C. Castro
Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1591
Author(s):  
Mohammad Masud Parvez ◽  
Tan Pan ◽  
Yitao Chen ◽  
Sreekar Karnati ◽  
Joseph W. Newkirk ◽  
...  

In additive manufacturing, the variation of the fabrication process parameters influences the mechanical properties of a material such as tensile strength, impact toughness, hardness, fatigue strength, and so forth, but fatigue testing of metals fabricated with all different sets of process parameters is a very expensive and time-consuming process. Therefore, the nominal process parameters by means of minimum energy input were first identified for a dense part and then the optimized process parameters were determined based on the tensile and impact toughness test results obtained for 304L stainless steel deposited in laser powder bed fusion (LPBF) process. Later, the high cycle fatigue performance was investigated for the material built with these two sets of parameters at horizontal, vertical, and inclined orientation. In this paper, displacement controlled fully reversed (R = −1) bending type fatigue tests at different levels of displacement amplitude were performed on Krouse type miniature specimens. The test results were compared and analyzed by applying the control signal monitoring (CSM) method. The analysis shows that specimen built-in horizontal direction for optimized parameters demonstrates the highest fatigue strength while the vertical specimen built with nominal parameters exhibits the lowest strength.


Author(s):  
Miroslav Šmíd ◽  
Ivo Kuběna ◽  
Michal Jambor ◽  
Stanislava Fintová

2010 ◽  
Vol 4 (1) ◽  
pp. 94-104 ◽  
Author(s):  
Kiyotaka MASAKI ◽  
Yasuo OCHI ◽  
Takashi MATSUMURA ◽  
Takaaki IKARASHI ◽  
Yuji SANO

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xu Jia ◽  
Yang Ou Xiang ◽  
Hu Yuan Pei ◽  
Song Wei

PurposeThe investigations could guide the structural design and fatigue life prediction of air-conditioning compressor valve plates.Design/methodology/approachThe High-Cycle Fatigue (HCF) and Very-High-Cycle Fatigue (VHCF) behaviors of stainless steel used for air-conditioning compressor valve plates were investigated. Monotonic and cyclic loading conditions were designed to explore the fatigue responses according to the load characteristics of the structure.FindingsThe crack initiation can be observed as the arc-shaped cracks at both sides of specimens and Y-shaped crack bifurcation in the specimens. Moreover, the middle section and the cracks at both ends are not connected to the surface of the specimen. The stress-life results of the materials under two directions (vertical and horizontal) were provided to examine the difference in fatigue strength.Originality/valueMonotonic and cyclic loading conditions were designed to explore the fatigue responses according to the load characteristics of the structure. Based on the experimental data, the results indicate that specimens under cyclic loading conditions could demonstrate better mechanical performance than static loadings.


Sign in / Sign up

Export Citation Format

Share Document