Direct Write Additive Manufacturing of High-Strength, Short Fiber Reinforced Sandwich Panels

Author(s):  
Nashat Nawafleh ◽  
Emrah Celik

Abstract Additive manufacturing (AM) is a novel technology which allows fabrication of complex geometries from digital representations without tooling. In addition, this technology results in low material waste, short lead times and cost reduction especially for the production of parts in low quantities. Current additive manufacturing processes developed for thermoplastic sandwich panels suffer from an unavoidable weak mechanical performance and low thermal resistance. To overcome these limitations, emphasis is paid in this study on direct write AM technology for the fabrication of short carbon fiber-reinforced sandwich panel composites. Sandwich panels using different infill densities with high strength (> 107 MPa), and high short carbon fiber volume (46%) were attained successfully. In parallel to the strength enhancement, these sandwich panels possessed reduced densities (0.72 g/cc3) due to their lightweight lattice core structures. The mechanical performance of the created sandwich panels was examined and compared to the unreinforced, base ink structures by performing compression tests. Successful fabrication and characterization of the additively manufactured thermoset-based carbon fiber reinforced, sandwich panels in this study can extend the range of applications for AM composites that require lightweight structures, high mechanical performance as well as the desired component complexity.

Author(s):  
Valerio Di Pompeo ◽  
Archimede Forcellese ◽  
Tommaso Mancia ◽  
Michela Simoncini ◽  
Alessio Vita

AbstractThe present paper aims at studying the effect of geometric parameters and moisture content on the mechanical performances of 3D-printed isogrid structures in short carbon fiber-reinforced polyamide (namely Carbon PA). Four different geometric isogrid configurations were manufactured, both in the undried and dried condition. The dried isogrid structures were obtained by removing the moisture from the samples through a heating at 120 °C for 4 h. To measure the quantity of removed moisture, samples were weighted before and after the drying process. Tensile tests on standard specimens and buckling tests on isogrid panels were performed. Undried samples were tested immediately after 3D printing. It was observed that the dried samples are characterized by both Young modulus and ultimate tensile strength values higher than those provided by the undried samples. Similar results were obtained by the compression tests since, for a given geometric isogrid configuration, an increase in the maximum load of the dried structure was detected as compared to the undried one. Such discrepancy tends to increase as the structure with the lowest thickness value investigated is considered. Finally, scanning electron microscopy was carried out in order to analyze the fractured samples and to obtain high magnification three-dimensional topography of fractured surfaces after testing.


2013 ◽  
Vol 210 (9) ◽  
pp. 1944-1949 ◽  
Author(s):  
Shanshan Huang ◽  
Wancheng Zhou ◽  
Ping Wei ◽  
Fa Luo ◽  
Dongmei Zhu ◽  
...  

2016 ◽  
pp. 199-221 ◽  
Author(s):  
Raghunandan Sharma ◽  
Kamal K. Kar ◽  
Malay K. Das ◽  
Gaurav K. Gupta ◽  
Sudhir Kumar

Sign in / Sign up

Export Citation Format

Share Document