Effects of Non-Uniform Heating on Two-Phase Flow Through Microchannels

Author(s):  
Susan N. Ritchey ◽  
Justin A. Weibel ◽  
Suresh V. Garimella

As size, weight, and performance demands drive electronics packages to become increasingly thinner and more compact, volume restrictions prevent the use of large intermediate heat spreaders to mitigate heat generation non-uniformities. Instead, these non-uniform heat flux profiles are imposed directly on the ultimate heat sink, either due to chip-scale variations or the desire to cool multiple discrete devices. A better understanding of the impacts of non-uniform heating on two-phase flow characteristics and thermal performance limits for microchannel heat sinks is needed to address these thermal packaging trends. An experimental investigation is performed to explore flow boiling phenomena in a microchannel heat sink with point hotspots, as well as non-uniform streamwise and transverse heating conditions across the entire heat sink area. The investigation is conducted using a silicon microchannel heat sink with a 5 × 5 array of individually controllable heaters attached to a 12.7 mm × 12.7 mm square base. The channels are 240 μm wide, 370 μm deep, and separated by 110 μm wide fins. The working fluid is FC-77, flowing at a mass flux of approximately 890 kg/m2s. High-speed visualizations of the flow are recorded to observe the local flow regimes. It is found that even though the substrate thickness beneath the microchannels is very small (200 μm), significant lateral conduction occurs and must be accounted for in the calculation of the local heat flux imposed. For non-uniform heat input profiles, with peak heat fluxes along the central streamwise and transverse directions, it is found that the local flow regimes, heat transfer coefficients, and wall temperatures deviate significantly from a uniformly heated case. These trends are assessed as a function of an increase in the relative magnitude of the nonuniformity between the peak and background heat fluxes.

Author(s):  
Kanchan M. Kelkar ◽  
Suhas V. Patankar ◽  
Sukhvinder Kang

Microchannel heat sinks are being increasingly considered for the cooling of electronic equipment because of their ability to absorb high heat fluxes directly from the heat-dissipating components in a compact manner with a low thermal resistance. In this study, a computational method is presented for the analysis of conjugate heat transfer and two-phase flow in a heat sink containing a single microchannel. It involves a two-domain solution of the three-dimensional conduction within the solid region and the one-dimensional two-phase momentum and energy transfer within a microchannel. The nonlinear coupling between the two domains that occurs through the heat exchange at the walls of the microchannels is handled using an iterative calculation. Analysis of the flow and heat transfer in the microchannel is based on the homogenous flow assumption that is deemed to be accurate for the flow of low surface tension coolants such as methanol, isobutane, and HFC’s. Representative single and two-phase correlations are used for the calculation of the friction factor and the heat transfer coefficient. The computational model is applied for the prediction of the performance of a microchannel heat sink over a range of mass flow rates. The results of the analysis show the important physical effects that govern the performance of the microchannel heat sink involving two-phase flow. These include the acceleration of the flow in the microchannel in the two-phase region that influences the pressure drop through it and the two-phase enhancement of heat transfer that determines the temperature field within the solid region.   This paper was also originally published as part of the Proceedings of the ASME 2005 Heat Transfer Summer Conference.


Author(s):  
Xiaodong Lu ◽  
Linglan Zhou ◽  
Hong Zhang ◽  
Yingwei Wu ◽  
Guanghui Su ◽  
...  

The two-phase flow instability in parallel channels heated by uniform and non-uniform heat flux has been theoretically studied in this paper. Based on the homogeneous flow model in two-phase region, the system control equations of parallel channels were established. Semi-implicit finite-difference method and staggered mesh method were used to discretize the system control equations and the difference equations were solved with a chasing method. The cosine profile and uniform constant heat flux represent the non-uniform and uniform heating condition, respectively. The marginal stability boundaries (MSB) of parallel channels and the three-dimensional instability spaces (or instability reefs) of different heat flux models were obtained. For cosine profile heating, the stability of parallel channels increases with the increase of the system pressure and inlet resistant coefficient. In high inlet subcooling region, cosine heat flux can strengthen the system stability. However, in low inlet subcooling region, the negative effect to system stability will be caused by non-uniform heating. The increase of inlet resistant coefficient will move the turning point of the MSB to high inlet subcooling number.


1999 ◽  
Vol 121 (3) ◽  
pp. 646-652 ◽  
Author(s):  
T. S. Zhao ◽  
Q. Liao ◽  
P. Cheng

This paper presents an experimental study of a buoyancy-induced flow of water with phase-change heat transfer in a vertical porous tube heated at a constant heat flux. Experiments were carried out from subcooled liquid flow to connective boiling by varying the imposed heat fluxes. At a prescribed heat flux the steady-state mass flux of water, as well as the temperatures along the tube wall and along the centerline of the packed tube, were measured. It is shown that for both single-phase flow and the two-phase flow with a rather low vapor fraction, the induced mass flux increased as the heat flux was increased. However, as the imposed heat flux was increased further, the induced mass flux dropped drastically, and remained relatively constant afterwards. The influences of various parameters such as the porous tube diameter, the particle sizes, and the hydrostatic head on the induced mass flux are also examined.


Author(s):  
D. Bogojevic ◽  
K. Sefiane ◽  
A. J. Walton ◽  
H. Lin ◽  
G. Cummins ◽  
...  

Two-phase flow boiling in microchannels is one of the most promising cooling technologies able to cope with high heat fluxes generated by the next generation of central processor units (CPU). If flow boiling is to be used as a thermal management method for high heat flux electronics it is necessary to understand the behaviour of a non-uniform heat distribution, which is typically the case observed in a real operating CPU. The work presented is an experimental study of two-phase boiling in a multi-channel silicon heat sink with non-uniform heating, using water as a cooling liquid. Thin nickel film sensors, integrated on the back side of the heat sinks were used in order to gain insight related to temperature fluctuations caused by two-phase flow instabilities under non-uniform heating. The effect of various hotspot locations on the temperature profile and pressure drop has been investigated, with hotspots located in different positions along the heat sink. It was observed that boiling inside microchannels with non-uniform heating led to high temperature non-uniformity in transverse direction.


Sign in / Sign up

Export Citation Format

Share Document