Effect of Interpass Temperature on Morphology, Microstructure and Microhardness of Welded API 5L X65 Steel

Author(s):  
R. E. Trevisan ◽  
N. F. Santos ◽  
H. C. Fals ◽  
A. A. Santos

The overwhelming bulk of oil and gas in pipeline construction is done by welding the individual joints of pipe together. In a broad sense, welding is a metal-joining process wherein coalescence is produced by heating to a suitable temperature. In pipeline construction, this temperature has to be sufficient to render fusion of the joint. The mechanical and metallurgical properties and distortions usually present in weld structures are strongly influenced by preheating and interpass temperatures that are applied during the welding process. Basically, interpass temperatures depend on two factors: composition of the material and cooling rate. It is very important to choose the correct interpass temperatures, however, this is not a completely dominating matter. The objective of this paper is to present a study on the effect of different interpass temperatures on morphology, microstructure and consequently on microhardness of welded API 5L X65 steel. The welds were deposited by a Flux Cored Arc Welding Process and the heat input was held constant during all welding production. The interpass temperatures were calculated by different methods. Such temperatures were later verified experimentally. Temperature data were collected via a data acquisition system. The geometry and microstructure characterizations were performed via light optical microscopy and image analysis. These data were related to the different thermal cycles obtained. The results showed that the morphology, the microstructure and the microhardness of welded API 5L X65 steel were strongly influenced by the interpass temperature, revealing how important it is to choose the appropriate value.

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 61267-61276 ◽  
Author(s):  
Alexandre F. Torres ◽  
Franco B. Rocha ◽  
Fabricio A. Almeida ◽  
Jose H. F. Gomes ◽  
Anderson P. Paiva ◽  
...  

2014 ◽  
Vol 4 (1/2) ◽  
pp. 81
Author(s):  
Binoy K. Biswas ◽  
Asish Bandyopadhyay ◽  
Pradip K. Pal

2013 ◽  
Vol 13 (4) ◽  
pp. 239-250 ◽  
Author(s):  
T. Kannan ◽  
N. Murugan ◽  
B. N. Sreeharan

AbstractMost of the manufacturing enterprises indulge in the bonding of metals during the production process. This makes welding one of the most important processes in industries. Subsequently, due to the high usage of welding process, industrial engineers desire to optimize the parameters concerned to achieve the desired weld bead characteristics. This paper focuses on optimization of flux cored arc welding process parameters, which are used for deposition of duplex stainless steel on low carbon structural steel plates. Experiments were conducted based on central composite rotatable design and mathematical models were developed using multiple regression method. Further, optimization with objectives as minimizing percentage dilution, maximizing height of reinforcement and bead width was carried out using genetic algorithm and memetic algorithm. This problem was formulated as a multi objective, multivariable and non-linear programming problem. The algorithms were implemented using basic functions of C language making it highly reliable, adoptable, very user friendly and extendable to other welding processes such as GMAW, GTAW, robotic welding, etc. The adopted optimization techniques were further compared based on various computational factors.


Author(s):  
Paulo Henrique Grossi Dornelas ◽  
João da Cruz Payão Filho ◽  
Victor Hugo Pereira Moraes e Oliveira ◽  
Diogo de Oliveira Moraes ◽  
Petrônio Zumpano Júnior

Sign in / Sign up

Export Citation Format

Share Document