Near-Real-Time Seismic Monitoring for Pipelines

Author(s):  
Martin Zaleski ◽  
Gerald Ferris ◽  
Alex Baumgard

Earthquake hazard management for oil and gas pipelines should include both preparedness and response. The typical approach for management of seismic hazards for pipelines is to determine where large ground motions are frequently expected, and apply mitigation to those pipeline segments. The approach presented in this paper supplements the typical approach but focuses on what to do, and where to do it, just after an earthquake happens. In other words, we ask and answer: “Is the earthquake we just had important?”, “What pipeline is and what sites might it be important for?”, and “What should we do?” In general, modern, high-pressure oil and gas pipelines resist the direct effects of strong shaking, but are vulnerable to large co-seismic differential permanent ground displacement (PGD) produced by surface fault rupture, landslides, soil liquefaction, or lateral spreading. The approach used in this paper employs empirical relationships between earthquake magnitude, distance, and the occurrence of PGD, derived from co-seismic PGD case-history data, to prioritize affected pipeline segments for detailed site-specific hazard assessments, pre-event resiliency upgrades, and post-event response. To help pipeline operators prepare for earthquakes, pipeline networks are mapped with respect to earthquake probability and co-seismic PGD susceptibility. Geological and terrain analyses identify pipeline segments that cross PGD-susceptible ground. Probabilistic seismic models and deterministic scenarios are considered in estimating the frequency of sufficiently large and close causative earthquakes. Pipeline segments are prioritized where strong earthquakes are frequent and ground is susceptible to co-seismic PGD. These may be short-listed for mitigation that either reduces the pipeline’s vulnerability to damage or limits failure consequences. When an earthquake occurs, pipeline segments with credible PGD potential are highlighted within minutes of an earthquake’s occurrence. These assessments occur in near-real-time as part of an online geohazard management database. The system collects magnitude and location data from online earthquake data feeds and intersects them against pipeline network and terrain hazard map data. Pipeline operators can quickly mobilize inspection and response resources to a focused area of concern.

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3615 ◽  
Author(s):  
Santhakumar Sampath ◽  
Bishakh Bhattacharya ◽  
Pouria Aryan ◽  
Hoon Sohn

Corrosion is considered as one of the most predominant causes of pipeline failures in the oil and gas industry and normally cannot be easily detected at the inner surface of pipelines without service disruption. The real-time inspection of oil and gas pipelines is extremely vital to mitigate accidents and maintenance cost as well as to improve the oil and gas transport efficiency. In this paper, a new, non-contact optical sensor array method for real-time inspection and non-destructive evaluation (NDE) of pipelines is presented. The proposed optical method consists of light emitting diodes (LEDs) and light dependent resistors (LDRs) to send light and receive reflected light from the inner surface of pipelines. The uniqueness of the proposed method lies in its accurate detection as well as its localization of corrosion defects, based on the utilization of optical sensor array in the pipeline, and also the flexibility with which this system can be adopted for pipelines with different services, sizes, and materials, as well as the method’s economic viability. Experimental studies are conducted considering corrosion defects with different features and dimensions to confirm the robustness and accuracy of the method. The obtained data are processed with discrete wavelet transform (DWT) for noise cancelation and feature extraction. The estimated sizes of the corrosion defects for different physical parameters, such as inspection speed and lift-off distance, are investigated and, finally, some preliminary tests are conducted based on the implementation of the proposed method on an in-line developed smart pipeline inspection gauge (PIG) for in-line inspection (ILI) application, with resulting success.


Sign in / Sign up

Export Citation Format

Share Document