Analysis of Full-Scale Burst Test Data by Examining Effects of Insulation and Using Fully-Instrumented Standard Pressed-Notch and Modified Backslot DWTT Specimens

Author(s):  
M. Uddin ◽  
G. Wilkowski ◽  
C. Guan

An intensive effort was undertaken to understand the fracture behavior in a recent TCPL pipe burst test. The 48-inch diameter X80 pipe was buried in soil at the Spadeadam Test Site, but since it was desired to have the gas and pipe cooled to the minimum service conditions of −5°C, a 50-mm thick polyurethane foam (PUF) insulation was sprayed on the entire pipe test section. This was a reasonable precaution since freezing of a high water content soil around a large-diameter pipe burst test can require significant cooling capacity or a much longer duration to get to the burst test conditions. In this burst test, the crack propagated much farther than anticipated by traditional predictive approaches such as using Charpy energy to predict the minimum ductile fracture arrest toughness, assuming that soil backfill conditions existed. To explore this burst test behavior, two aspects were examined. The first was an assessment of the properties of the PUF insulation relative to the soil properties, and the second was the toughness evaluated by instrumented DWTT testing. The 50-mm thickness of the PUF insulation corresponded to about 8.3% of the pipe radius. In past loose-fitting steel sleeve crack arrestor burst tests, if the radial clearance was greater than 5.5% of the pipe, then a ductile fracture propagated under the arrestor regardless of its length with no change in speed. Hence if the PUF could be easily compressed, then the pipe in this burst test would behave as if it was in a non-backfilled condition. Non-backfilled pipe requires much higher toughness to arrest a ductile fracture. So perhaps the pipe in this burst test condition acted somewhere between non-backfilled and backfilled conditions — an aspect that might need a much more comprehensive computational model to better assess. Additionally to assess how material toughness played a role in this burst test, detailed instrumented toughness testing was conducted on material taken from several of the pipe lengths in the burst test. The evaluations of the Charpy energy to the DWTT energy suggested that one of the pipe materials may have behaved more like an X100 steel than an X80 steel. Correction factors on the predicted arrest toughness are well known to be needed for the Battelle Two Curve method (BTCM) when applied to X80 and X100 pipes. However, even with these corrections on the Charpy energy, arrest was predicted with soil backfill in several cases where in the actual test, the crack propagated through the pipes. Hence toughness corrections by themselves did not explain the test results. Additional calculations were then done assuming a non-backfilled condition (as suggested from the PUF property evaluation) along with the appropriate grade effect correction from the DWTT testing, and propagation was properly predicted in each case consistently with the burst test. So the fracture behavior in this burst test was somewhere between those of backfilled and non-backfilled pipe. As a result of this investigation it appears that the PUF insulation played an important role in crack arrest behavior, and because of its presence may have required much higher toughness than was actually needed for the actual service conditions of pipe buried in actual soil backfill.

Author(s):  
Toshihiko Amano ◽  
Satoshi Igi ◽  
Takahiro Sakimoto ◽  
Takehiro Inoue ◽  
Shuji Aihara

This paper describes the results of pressure vessel fracture test which called West Jefferson and/or partial gas burst testing using Grade API X65 linepipe steel with high Charpy energy that exhibits inverse facture in the Drop Weight Tear Test (DWTT). A series of pressure vessel fracture tests which is as part of an ongoing effort by the High-strength Line Pipe committee (HLP) of the Iron and Steel Institute of Japan (ISIJ) was carried out at low temperature in order to investigate brittle-to-ductile transition behavior and to compare to DWTT fracture behavior. Two different materials on Fracture Appearance Transition Temperature (FATT) property were used in these tests. One is −60 degree C and the other is −25 to −30 degree C which is defined as 85 % shear area fraction (SA) in the standard pressed notch DWTT (PN-DWTT). The dimensions of the test pipes were 24inches (609.6 mm) in outside diameter (OD), 19.1 mm in wall thickness (WT). In each test, the test pipe is cooled by using liquid nitrogen in the cooling baths. Two cooling baths are set up separately on the two sides of the test vessel, making it possible to obtain fracture behaviors under two different test temperatures in one burst test. The test vessel was also instrumented with pressure transducers, thermocouples and timing wires to obtain the pressure at the fracture onset, temperature and crack propagation velocity, respectively. Some informative observations to discuss appropriate evaluation method for material resistance to brittle facture propagation for high toughness linepipe materials are obtained in the test. When the pipe burst test temperatures are higher than the PN-DWTT transition temperature, ductile cracks were initiated from the initial notch and propagated with short distance in ductile manner. When the pipe burst test temperatures were lower than the PN-DWTT transition temperature, brittle cracks were initiated from the initial notch and propagated through cooling bath. However, the initiated ductile crack at lower than the transition temperature was not changed to brittle manner. This means inverse facture occurred in the PN-DWTT is a particular problem caused by the API DWTT testing method. Furthermore, results for the pipes tested indicated that inverse facture occurred in PN-DWTT at the temperature above the 85 % FATT may not affect the arrestability against the brittle fracture propagation and it is closely related with the location of brittle fracture initiation origin in the fracture appearance of PN-DWTT.


Author(s):  
Xian-Kui Zhu

Running fracture control is a very important technology for gas transmission pipelines with large diameter and high pressure. The Battelle two-curve (BTC) model developed in the early 1970s has been widely used in pipeline industry to determine arrest toughness in terms of the Charpy energy. Because of its semi-empirical nature and calibration with test data only for grades up to X65, the BTC does not work for higher grades. Simple corrections were thus proposed to extend the BTC model to higher grades, but limited to those grades considered. Moreover, the BTC model only predicts the minimum arrest toughness, but not arrest distance. To fill the technical gaps, this paper proposes a modified two-curve (MTC) model and a fracture arrest distance model in reference to the Charpy energy. The MTC model coupling with an arrest distance algorithm can predict fracture arrest toughness and arrest distance in one simulation of numerical integration for a single pipe or a set of multiple pipes with given toughness. Two sets of full-scale burst test data for X70 and X80 are used to validate the proposed model, and the results show good agreements between the predictions and full-scale test data of arrest toughness and arrest distance as well. The MTC model is then applied to optimize a design of pipe segment arrangements for a mockup full-scale burst test on a high-strength pipeline steel. The MTC simulation results confirm the experimental observation that different pipe arrangements determine different arrest toughness and arrest distance for the same grade pipes.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Tuo Shi ◽  
Nianchun Deng ◽  
Xiao Guo ◽  
Wen Xu ◽  
Shi Wang

Taking the construction of a concrete-filled steel tube (CFST) arch bridge (part of the Sichuan-Tibet Railway) in low temperatures as the test site, firstly the deformation performance test of concrete was carried out. Following this initial testing, measurement of compressive strength and shrinkage performance was conducted in large-diameter CFSTs under a variety of curing conditions. Experimental results showed that the expansion effect of Ca-Mg composite expansive agent in concrete was better than that of other expansive agents at any stage. Under low-temperature curing (0°C), the sampling strength of the large-diameter CFSTs reached 73.5% of the design strength at 28 d in the presence of a nonthermal curing system. The design strength itself was reached, when a curing system involving a thermal insulation film was applied, and use of this film also led to improvements in concrete shrinkage. The results suggested that a Ca-Mg composite expansive agent, combined with an insulation film curing system, should be the technique selected for concrete pumping construction of CFST arch bridges in Tibet.


Author(s):  
Katsumasa Miyazaki ◽  
Kunio Hasegawa ◽  
Koichi Saito

The fitness-for-service codes require the characterization of non-aligned multiple flaws for flaw evaluation, which is performed using a flaw proximity rule. Worldwide, almost all such codes provide their own proximity rule, often with unclear technical bases of the application of proximity rule to ductile or fully plastic fracture. In particular, the effect of flaw dimensions of multiple surface flaws on fully plastic fracture of non-aligned multiple flaws had not been clear. To clarify the effect of the difference of part through-wall and through-wall flaws on the behavior of fully plastic fracture, the fracture tests of flat plate specimens with non-aligned multiple part through-wall flaws were conducted. When the flaw depth a was shallow with 0.4 in ratio of a to thickness t, the maximum load Pmax occurred at penetration of multiple flaws and the effect of vertical distance of non-aligned multiple flaws H on Pmax was not so significant. However, when flaw depth was deep with 0.8 in a/t, Pmax occurred after penetration of flaws and the effect of H on Pmax could be seen clearly. It was judged that the through-wall flaw tests were appropriate for discussion of the effect of H on Pmax and the alignment rule of multiple flaws. In addition, in order to clarify the appropriate length parameter to estimate Pmax of test specimens with dissimilar non-aligned through-wall multiple flaws, the fracture tests of plate specimens were also conducted. The effect of different flaw length on Pmax was discussed with maximum, minimum and averages of dissimilar non-aligned multiple flaw lengths. Experimental results showed that the maximum length lmax would be an appropriate length parameter to estimate Pmax, when the non-aligned multiple through-wall flaws were dissimilar.


Sign in / Sign up

Export Citation Format

Share Document