Two-Dimensional Real-Time Interferometric Monitoring System for Exposure Controlled Projection Lithography

Author(s):  
Amit S. Jariwala ◽  
Robert E. Schwerzel ◽  
Michael Werve ◽  
David W. Rosen

Stereolithography is an additive manufacturing process in which liquid photopolymer resin is cross-linked and converted to solid polymer with an ultraviolet light source. Exposure Controlled Projection Lithography (ECPL) is a stereolithographic process in which incident radiation, patterned by a dynamic mask, passes through a transparent substrate to cure a photopolymer layer that grows progressively from the substrate surface. In contrast to existing stereolithography techniques, this technique uses a gray-scale projected image, or alternatively a series of binary bit-map images, to produce a three-dimensional polymer object with the desired shape, and it can be used on either flat or curved substrates. Like most stereolithographic technologies, ECPL works in a unidirectional fashion. Calibration constants derived experimentally are fed to the software used to control the system. This unidirectional fabrication method does not, by itself, allow the system to compensate for minor variations, thereby limiting the overall accuracy of the process. We present here a simple, real-time monitoring system based on interferometry, which can be used to provide feedback control to the ECPL process, thus making it more robust and increasing system accuracy. The results obtained from this monitoring system provide a means to better visualize and understand the various phenomena occurring during the photopolymerization of transparent photopolymers.

2018 ◽  
pp. 14-18
Author(s):  
V. V. Artyushenko ◽  
A. V. Nikulin

To simulate echoes from the earth’s surface in the low flight mode, it is necessary to reproduce reliably the delayed reflected sounding signal of the radar in real time. For this, it is necessary to be able to calculate accurately and quickly the dependence of the distance to the object being measured from the angular position of the line of sight of the radar station. Obviously, the simplest expressions for calculating the range can be obtained for a segment or a plane. In the text of the article, analytical expressions for the calculation of range for two-dimensional and three-dimensional cases are obtained. Methods of statistical physics, vector algebra, and the theory of the radar of extended objects were used. Since the calculation of the dependence of the range of the object to the target from the angular position of the line of sight is carried out on the analytical expressions found in the paper, the result obtained is accurate, and due to the relative simplicity of the expressions obtained, the calculation does not require much time.


2008 ◽  
Vol 25 (10) ◽  
pp. 1131-1137 ◽  
Author(s):  
Jayaprakash Manda ◽  
Saritha Kumari Kesanolla ◽  
Ming Chon Hsuing ◽  
Navin C. Nanda ◽  
Elsayed Abo-Salem ◽  
...  

2012 ◽  
Vol 224 ◽  
pp. 547-550 ◽  
Author(s):  
Wei Dong Geng ◽  
Yu Gong ◽  
Li Zhang ◽  
Jian An ◽  
Jian De Wu

Designing the three dimensional (3D) GIS software used in monitoring mineral pipeline transporting system. The software can truly show and restore the geography of project and the features of terrain .The operator can not only examine and grasp the true situation of the distribution of pipeline, but also keep watch on the secure running of the pipeline by real-time remote video in the remote control room. The practical application indicates that the pipeline can run safely, stably and efficiently with the monitoring system.


Author(s):  
C.-Y. Kuo ◽  
J.D. Frost ◽  
J.S. Lai ◽  
L.B. Wang

Digital image analysis provides the capability for rapid measurement of particle characteristics. When an image is captured and digitized, numerous measurements can be made in near real time for each particle. Usually, image analysis techniques treat particles as two-dimensional objects since only the two-dimensional projection of the particles is captured. In this study, three-dimensional analysis of aggregate particles that was performed by attaching aggregates in sample trays with two perpendicular faces is described. After the initial projected image of the aggregates is captured and measured, the sample trays are rotated 90 degrees so that the aggregates are now perpendicular to their original orientation and the dimensions of the aggregates in the new projected image are captured and measured. The long, intermediate, and short particle dimensions ( dL, dI, and dS, respectively) provide direct measures of the flatness and elongation of the particles. Some other shape indexes can also be derived from the measurements of area and perimeter length. The proposed image analysis method was verified by comparing the results obtained with manual measurements of particle dimensions for uniform size [passing 12.7 mm (1/2 in.) sieve and retained on 9.5 mm (3/8 in.) sieve] aggregates. Three-dimensional image analysis was also performed on five aggregates of standard size No. 89 from different sources, and the results are summarized herein. The proposed method is expected to improve field quality control of aggregates used in hot mix asphalt.


2016 ◽  
Vol 33 (9) ◽  
pp. 1409-1412
Author(s):  
Tuğba Kemaloğlu Öz ◽  
Mahmoud Elsayed ◽  
Navin C. Nanda ◽  
Koray Kalenderoğlu ◽  
Şükrü Akyüz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document