Effect of Nanostructured Thermal Spray Coatings on Fatigue Behavior of Low-Carbon Steel

Author(s):  
Ahmed Ibrahim ◽  
Christopher C. Berndt

Nanostructured and conventional titania (TiO2) coatings were thermally sprayed using air plasma spray (APS) and high velocity oxy-fuel (HVOF) processes. The fatigue and mechanical properties of these coatings were investigated. The fatigue strength of coatings deposited onto low-carbon steel showed that the nanostructured titania coated specimens exhibited significantly higher fatigue strength compared to the conventionally sprayed titania. SEM analysis of fracture surfaces revealed valuable information regarding the influence of these coatings on the performance of the coated component. Analysis of surface deformation around Vickers indentations was carried out. This investigation gives new understanding to the nature of fatigue and deformation of these coatings.

2000 ◽  
Vol 277 (1-2) ◽  
pp. 176-182 ◽  
Author(s):  
Pi Lin Liu ◽  
Jian Ku Shang ◽  
Oludele O Popoola

1992 ◽  
Vol 114 (3) ◽  
pp. 317-322 ◽  
Author(s):  
Y. Nagase ◽  
S. Suzuki

Fatigue behavior of plain specimens of low carbon steel subjected to small tensile prestrain is investigated through rotating bending tests and the mechanism of the decrease of fatigue limit due to the prestrain is discussed. It is found that 3 percent prestraining causes the acceleration of both slip and crack initiations, and increases the growth rate of a small surface crack of less than 0.3 mm. It also decreases the fatigue limit. If prestrained material is aged, the fatigue limit increases. These effects of the small prestrain are explained based on the unpinning of locked dislocations due to the prestrain.


1978 ◽  
Vol 21 (152) ◽  
pp. 181-188 ◽  
Author(s):  
Norihiko HASEGAWA ◽  
Yozo KATO ◽  
Masaki NAKAJIMA

Sign in / Sign up

Export Citation Format

Share Document