Near-Field Radiative Heat Transfer Between Spherical Surfaces

Author(s):  
Arvind Narayanaswamy ◽  
Sheng Shen ◽  
Gang Chen

Nearfield radiative transfer is known to be significantly different from that of far-field radiative transfer based on Plancks theory of blackbody radiation. Theoretical predictions point to a significant enhancement of radiative transfer between closely spaced objects due to the tunneling of surface phonon polaritons. Despite extensive theoretical predictions of enhancement between parallel surfaces, experimental evidence of near-field radiative transfer in excess of Plancks limit has been elusive due to experimental difficulties. In this talk, we will present results of our theoretical and experimental investigations into near-field radiative transfer between spherical surfaces. We have developed a sensitive technique of measuring nearfield radiative transfer between a microsphere and a substrate using a bimaterial atomic force microscope (AFM) cantilever, resulting in heat transfer-distance curves. Measurements of radiative transfer between a sphere and a flat substrate show the presence of strong nearfield effects resulting in enhancement of heat transfer over the predictions of the Planck blackbody radiation theory.

Author(s):  
Arvind Narayanaswamy ◽  
Sheng Shen ◽  
Gang Chen

Thermal radiative transfer between objects as well as near-field forces such as van der Waals or Casimir forces have their origins in the fluctuations of the electrodynamic field. Near-field radiative transfer between two objects can be enhanced by a few order of magnitude compared to the far-field radiative transfer that can be described by Planck’s theory of blackbody radiation and Kirchoff’s laws. Despite this common origin, experimental techniques of measuring near-field forces (using the surface force apparatus and the atomic force microscope) are more sophisticated than techniques of measuring near-field radiative transfer. In this work, we present an ultra-sensitive experimental technique of measuring near-field using a bi-material atomic force microscope cantilever as the thermal sensor. Just as measurements of near-field forces results in a “force distance curve”, measurement of near-field radiative transfer results in a “heat transfer-distance” curve. Results from the measurement of near-field radiative transfer will be presented.


Author(s):  
Arvind Narayanaswamy ◽  
Sheng Shen ◽  
Gang Chen

Near–field radiative transfer between two objects can be enhanced by a few order of magnitude compared to the far–field radiative transfer that can be described by Planck’s theory of blackbody radiation and Kirchoffs laws. We have developed a numerical technique to determine the near–field thermal radiative transfer between two spheres. We have measured near–field thermal radiation between a silica sphere and a flat silica substrate as a function of gap between them using an bi–material cantilever as a thermal sensor. The experimental results show qualitative agreement with numerical results. The results of this work indicate that the proximity force approximation, widely used to determine forces between curved objects, is not applicable to near–field radiative transfer between curved objects.


Sign in / Sign up

Export Citation Format

Share Document