Effect of Al2O3 Nanolubricant on a Turbo-BII R134a Pool Boiling Surface

Author(s):  
M. A. Kedzierski

This paper quantifies the influence of Al2O3 nanoparticles on the pool boiling performance of R134a/polyolester mixtures on a Turbo-BII-HP boiling surface. An Al2O3 nanolubricant (a lubricant containing dispersed nano-size particles) was made by suspending nominally 10 nm diameter Al2O3 particles in a synthetic polyolester to roughly a 1.0% volume fraction. The nanoparticles caused, on average, a 12% degradation in the boiling heat transfer relative to that for R134a/polyolester mixtures without nanoparticles for the three lubricant mass fractions that were tested. The degradation was nearly constant for heat fluxes between 20 kW/m2 and 120 kW/m2. It was speculated that the boiling heat transfer degradation was primarily due to a combination of (1) film boiling in the reentrant cavity rendering the nucleate boiling enhancement mechanism of the nanoparticles ineffective and (2) a reduction in bubble frequency due to the increased surface wetting as caused by the nanoparticles. In addition, these degradation factors might be mitigated with increased nanoparticle loading.

2011 ◽  
Vol 133 (11) ◽  
Author(s):  
K. Hari Krishna ◽  
Harish Ganapathy ◽  
G. Sateesh ◽  
Sarit K. Das

Nanofluids, solid-liquid suspensions with solid particles of size of the order of few nanometers, have created interest in many researchers because of their enhancement in thermal conductivity and convective heat transfer characteristics. Many studies have been done on the pool boiling characteristics of nanofluids, most of which have been with nanofluids containing oxide nanoparticles owing to the ease in their preparation. Deterioration in boiling heat transfer was observed in some studies. Metallic nanofluids having metal nanoparticles, which are known for their good heat transfer characteristics in bulk regime, reported drastic enhancement in thermal conductivity. The present paper investigates into the pool boiling characteristics of metallic nanofluids, in particular of Cu-H2O nanofluids, on flat copper heater surface. The results indicate that at comparatively low heat fluxes, there is deterioration in boiling heat transfer with very low particle volume fraction of 0.01%, and it increases with volume fraction and shows enhancement with 0.1%. However, the behavior is the other way around at high heat fluxes. The enhancement at low heat fluxes is due to the fact that the effect of formation of thin sorption layer of nanoparticles on heater surface, which causes deterioration by trapping the nucleation sites, is overshadowed by the increase in microlayer evaporation, which is due to enhancement in thermal conductivity. Same trend has been observed with variation in the surface roughness of the heater as well.


Author(s):  
Gilbert Moreno ◽  
Steven J. Oldenburg ◽  
Seung M. You ◽  
Joo H. Kim

This investigation conducts pool boiling experiments under saturated conditions (Tsat = 60 °C) using nanofluids as the coolants. Three different nanofluids were tested including zinc oxide (ZnO)-water, aluminum oxide (Al2O3)-water and aluminum oxide (Al2O3)-water+ethylene glycol (ethylene glycol solution). At saturation (Tsat = 60°C), the pool boiling performance of the two pure water based nanofluids were similar. The maximum CHF enhancement as compared to the predicted Zuber’s [1] CHF evaluated at an equivalent saturation temperature is ∼180% for Al2O3-water nanofluids and ∼240% for ZnO-water nanofluids. In both cases, no degradation in the boiling heat transfer rate was observed for lower nanoparticle concentrations. However, higher nanoparticle concentrations demonstrate nucleate boiling heat transfer degradation at high heat fluxes. The dispersion of Al2O3 nanoparticles in various ethylene glycol solutions is also found to enhance CHF by as much as ∼130%. A significant difference in the diameter of individual grains/particles (27 ± 16.3 nm) and the volume weighted average diameter of particles in solution (155 ± 80 nm) indicates that the Al2O3-water nanofluids consist primarily of nanoparticle agglomerates. Gravimetric fractionation of the nanofluid produced nanofluids with particle/particle aggregate average diameters that ranged from 69–346 nm. Over the size range tested, there was no significant CHF dependence on the average particle diameter.


2014 ◽  
Vol 592-594 ◽  
pp. 1601-1606 ◽  
Author(s):  
Sameer Sheshrao Gajghate ◽  
Anil R. Aacharya ◽  
Anil T. Pise ◽  
Ganesh S. Jadhav

The addition of additives to the water is known to enhance boiling heat transfer. In the present investigation, boiling heat transfer coefficients are measured for Nichrome wire, immersed in saturated water with & without additive. An additive used is 2-Ethyl 1-Hexanol with varying concentrations in the range of 10-10000 ppm. Extensive experimentation of pool boiling is carried out above the critical heat flux. Boiling behavior i.e. bubble dynamics are observed at higher heat flux for nucleate boiling of water over wide ranges of concentration of additive in water. Results are encouraging and show that a small amount of surface active additive makes the nucleate boiling heat transfer coefficient considerably higher, and that there is an optimum additive (500-1000ppm) concentration for higher heat fluxes. An optimum level of enhancement is observed up to a certain amount of additive 500-1000ppm in the tested range. Thereafter significant enhancement is not observed. This enhancement may be due to change in thermo-physical properties i.e. mainly due to a reduction in surface tension of water in the presence of additive.


Author(s):  
Abhishek Swarnkar ◽  
Vikas J Lakhera

Boiling heat transfer is known for high heat fluxes at relatively small temperature differences. However, over the decades, technological innovations have demanded further augmentation in heat fluxes associated with boiling. Among the various active and passive methods, use of ultrasonic waves in boiling liquid has emerged as a proven technique for the required heat transfer improvement as demonstrated by a number of researchers. The present article reviews the application of ultrasonic waves in enhancing the heat transfer in various regimes of pool boiling. It has been found that the use of ultrasonic field is more promising in case of sub-cooled boiling as compared to saturated condition. Along with ultrasonic field of lower frequency and higher power, the usage of various passive techniques of surface improvement such as micro channel, surface topology, nano coatings etc. leads to further augmentation of heat transfer. Also, the relative placement of heating surface in ultrasonic wave field must be considered inevitably while designing an ultrasonic field assisted pool boiling system. It requires further investigations to conduct more parametric studies such as effect of pressure along with the usage of ultrasonic waves during sub- cooled boiling. Also during ultrasonic assisted pool boiling, various nano fluids can be tested for improving the heat transfer characteristics particularly in the saturated nucleate boiling regime.


Author(s):  
K-J Park ◽  
D Jung ◽  
S E Shim

In this work, nucleate pool boiling heat transfer coefficients (HTCs) of five refrigerants of differing vapour pressures are measured on a horizontal, smooth copper surface of 9.53×9.53 mm. The tested refrigerants are R123, R152a, R134a, R22, and R32 and HTCs are taken from 10 kW/m2 to the critical heat flux (CHF) of each refrigerant. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and in the liquid pool, respectively. Test results show that nucleate pool boiling HTCs of halogenated refrigerants increase as the heat flux and vapour pressure increase. This typical trend is maintained even at high heat fluxes above 200 kW/m2. Zuber's prediction equation for CHF is quite accurate showing a maximum deviation of 21 per cent for all refrigerants tested. For all refrigerants, Stephan and Abdelsalam's well-known correlation underpredicted nucleate boiling HTC data up to the CHF with an average deviation of 21.3 per cent, while Cooper's correlation overpredicted the data with an average deviation of 14.2 per cent. On the other hand, Gorenflo's and Jung et al.'s correlations showed 5.8 and 6.4 per cent deviations, respectively, in the entire nucleate boiling range up to the CHF.


Author(s):  
Mark A. Kedzierski

This paper quantifies the influence of diamond nanoparticles on the pool boiling performance of R134a/polyolester mixtures on a roughened, horizontal, flat surface. Nanofluids are liquids that contain dispersed nano-size particles. A lubricant based nanofluid (nanolubricant) was made by suspending 10 nm diameter diamond particles in a synthetic ester to roughly a 2.6% volume fraction. For the 0.5% nanolubricant mass fraction, the nanoparticles caused a heat transfer enhancement relative to the heat transfer of pure R134a/polyolester (99.5/0.5) as large as 129% for the best performing tests. A similar enhancement was observed for the R134a/nanolubricant (99/1) mixture, which had a heat flux that was on average 91% larger than that of the R134a/polyolester (99/1) mixture. Further increase in the nanolubricant mass fraction to 2% resulted in boiling heat transfer degradation of approximately 19% for the best performing tests. It was speculated that the poor quality of the nanolubricant suspension caused the performance of the (99.5/0.5), and the (98/2) nanolubricant mixtures to decay over time to, on average, 36% and 76% of the of pure R134a/polyolester performance, respectively. Thermal conductivity and viscosity measurements and a refrigerant\lubricant mixture pool-boiling model were used to suggest that increases in thermal conductivity and lubricant viscosity are mainly responsible for the heat transfer enhancement due to nanoparticles. Particle size measurements were used to suggest that particle agglomeration induced a lack of performance repeatability for the (99.5/0.5) and the (98/2) mixtures. From the results of the present study, it is speculated that if a good dispersion of nanoparticles in the lubricant is not obtained, then the agglomerated nanoparticles will not provide interaction with bubbles, which is favorable for heat transfer. Further research with nanolubricants and refrigerants are required to establish a fundamental understanding of the mechanisms that control nanofluid heat transfer.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
M. A. Kedzierski

This paper quantifies the influence of diamond nanoparticles on the pool boiling performance of R134a/polyolester mixtures on a roughened, horizontal, and flat surface. Nanofluids are liquids that contain dispersed nanosize particles. A lubricant based nanofluid (nanolubricant) was made by suspending 10 nm diameter diamond particles in a synthetic ester to roughly a 2.6% volume fraction. For the 0.5% nanolubricant mass fraction, the nanoparticles caused a heat transfer enhancement relative to the heat transfer of pure R134a/polyolester (99.5/0.5) up to 129%. A similar enhancement was observed for the R134a/nanolubricant (99/1) mixture, which had a heat flux that was on average 91% larger than that of the R134a/polyolester (99/1) mixture. Further increase in the nanolubricant mass fraction to 2% resulted in boiling heat transfer degradation of approximately 19% for the best performing tests. It was speculated that the poor quality of the nanolubricant suspension caused the performance of the (99.5/0.5), and the (98/2) nanolubricant mixtures to decay over time to, on average, 36% and 76% of the of pure R134a/polyolester performance, respectively. Thermal conductivity and viscosity measurements and a refrigerant\lubricant mixture pool-boiling model were used to suggest that increases in thermal conductivity and lubricant viscosity are mainly responsible for the heat transfer enhancement due to nanoparticles. Particle size measurements were used to suggest that particle agglomeration induced a lack of performance repeatability for the (99.5/0.5) and the (98/2) mixtures. From the results of the present study, it is speculated that if a good dispersion of nanoparticles in the lubricant is not obtained, then the agglomerated nanoparticles will not provide interaction with bubbles, which is favorable for heat transfer. Further research with nanolubricants and refrigerants are required to establish a fundamental understanding of the mechanisms that control nanofluid heat transfer.


2012 ◽  
Vol 550-553 ◽  
pp. 2913-2916 ◽  
Author(s):  
Jin Liang Tao ◽  
Xin Liang Wang ◽  
Pei Hua Shi ◽  
Xiao Ping Shi

In this paper, a new porous coating was formed directly on the surface of titanium metal via anodic oxidation. And by the SEM, the morphology of the coating, which is composed of well-ordered perpendicular nanotubes, was characterized. Moreover, taking deionized water as the test fluid, a visualization study of the coating on its pool boiling heat transfer performance was made. The results demonstrated that compared with the smooth surface, the nucleate boiling heat transfer coefficient can increase 3 times while the nucleate boiling super heat was reduced 30%.


Author(s):  
Muhamad Zuhairi Sulaiman ◽  
Masahiro Takamura ◽  
Kazuki Nakahashi ◽  
Tomio Okawa

Boiling heat transfer (BHT) and critical heat flux (CHF) performance were experimentally studied for saturated pool boiling of water-based nanofluids. In present experimental works, copper heaters of 20 mm diameter with titanium-oxide (TiO2) nanocoated surface were produced in pool boiling of nanofluid. Experiments were performed in both upward and downward facing nanofluid coated heater surface. TiO2 nanoparticle was used with concentration ranging from 0.004 until 0.4 kg/m3 and boiling time of tb = 1, 3, 10, 20, 40, and 60 mins. Distilled water was used to observed BHT and CHF performance of different nanofluids boiling time and concentration configurations. Nucleate boiling heat transfer observed to deteriorate in upward facing heater, however; in contrast effect of enhancement for downward. Maximum enhancements of CHF for upward- and downward-facing heater are 2.1 and 1.9 times, respectively. Reduction of mean contact angle demonstrate enhancement on the critical heat flux for both upward-facing and downward-facing heater configuration. However, nucleate boiling heat transfer shows inconsistency in similar concentration with sequence of boiling time. For both downward- and upward-facing nanocoated heater's BHT and CHF, the optimum configuration denotes by C = 400 kg/m3 with tb = 1 min which shows the best increment of boiling curve trend with lowest wall superheat ΔT = 25 K and critical heat flux enhancement of 2.02 times.


Sign in / Sign up

Export Citation Format

Share Document