Experimental Study on Thermal Contact Resistance of Multi-Walled Carbon Nanotubes

Author(s):  
Kazunari Tsuru ◽  
Yutaka Yamada ◽  
Tatsuya Ikuta ◽  
Takashi Nishiyama ◽  
Koji Takahashi

Heat transfer at solid-solid interface is very fascinating where no one knows the full mechanism which has a huge impact in many applications in engineering and science. In many kinds of interfaces, we treat a van der Waals contact of perfectly-smooth surfaces by using multi-walled carbon nanotubes (CNTs). Their thermal contact resistance (TCR) is estimated by comparing measured thermal conductivity of CNT specimen and numerical simulation result. The TCR per unit area is estimated as 1.58∼3.33×10−8 m2K/W at room temperature in vacuum, which is much higher than our previous result in air. It was also found that TCR is inversely proportional with the temperature to the 1.92th power different from the simple phonon model represented by the diffuse mismatch model.

Author(s):  
Kei Ishikawa ◽  
Shohei Chiashi ◽  
Saifullah Badar ◽  
Theerapol Thurakitseree ◽  
Takuma Hori ◽  
...  

We present a method for measuring the thermal conductivity and the thermal contact resistance between the film and the substrate of vertically-aligned single-walled carbon nanotubes (VA-SWNTs) grown on Si substrate by ACCVD (Alcohol Catalytic Chemical Vapor Deposition) method, utilizing temperature dependence of the Raman spectrum obtained from SWNTs. The method utilizes the excitation laser of the Raman system to heat the VA-SWNT film and measure the temperature simultaneously. The method finds the thermal conductivity of the VA-SWNT film to be around 1 Wm−1K−1 and the thermal contact resistance between the substrate and the film to be around 10−5∼10−6 m2KW−1. The obtained film thermal conductivity is converted into equivalent thermal conductivity of an individual SWNT, whose value is several tens of Wm−1K−1, and is more than an order of magnitude smaller than the reports on individual SWNTs.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3161
Author(s):  
Sandra Zarska ◽  
Damian Kulawik ◽  
Volodymyr Pavlyuk ◽  
Piotr Tomasik ◽  
Alicja Bachmatiuk ◽  
...  

The bromination of multi-walled carbon nanotubes (MWCNT) was performed with vapor bromine in a closed vessel, and they were subjected to intensive stirring with a magnetic stirrer for up to 14 days. The efficiency of bromination was compared depending upon duration. The structure and surface of the crude and purified products were characterized by detailed physicochemical analyses, such as SEM/EDS, TEM, XRD, TGA, Raman, and XPS spectroscopies. The studies confirmed the presence of bromine covalently bound with nanotubes as well as the formation of inclusion MWCNT–Br2 complexes. It was confirmed that Br2 molecules are absorbed on the surface of nanotubes (forming the CNT-Br2 complex), while they can dissociate close to dangling bonds at CNT defect sites with the formation of covalent C−Br bonds. Thus, any covalent attachment of bromine to the graphitic surface achieved around room temperature is likely related to the defects in the MWCNTs. The best results, i.e., the highest amount of attached Br2, were obtained for brominated nanotubes brominated for 10 days, with the content of covalently bound bromine being 0.68 at% (by XPS).


Carbon ◽  
2010 ◽  
Vol 48 (13) ◽  
pp. 3976
Author(s):  
Xue Sun ◽  
Hai-Tao Fang ◽  
Hui-Long Yu ◽  
Yi Chu ◽  
Bao-You Zhang ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Shuang-Xi Xue ◽  
Qin-Tao Li ◽  
Xian-Rui Zhao ◽  
Qin-Yi Shi ◽  
Zhi-Gang Li ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) were irradiated by 1.2 keV Ar ion beams for 15–60 min at room temperature with current density of 60 µA/cm2. The morphology and microstructure are investigated by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The results show that carbon nanofibers are achieved after 60 min ion irradiation and the formation of carbon nanofibers proceeds through four periods, carbon nanotubes—amorphous carbon nanowires—carbon nanoparticles along the tube axis—conical protrusions on the nanoparticles surface—carbon nanofibers from the conical protrusions.


2011 ◽  
Vol 152 (2) ◽  
pp. 144-154 ◽  
Author(s):  
Jean-Marc Tulliani ◽  
Alessio Cavalieri ◽  
Simone Musso ◽  
Eloisa Sardella ◽  
Francesco Geobaldo

Sign in / Sign up

Export Citation Format

Share Document