Modeling of Thermoelastic Stress Wave in Laser-Assisted Cell Direct Writing

Author(s):  
Wei Wang ◽  
Yong Huang ◽  
Yafu Lin

Laser-assisted cell direct-write technique has been a promising biomaterial direct-write method. For safe and reproducible cell direct writing, the cell damage due to process-induced external stress must be understood in addition to biological property research. The objective of this study is to model the thermoelastic stress wave propagation inside the coating in laser-assisted cell direct writing when the vaporization or optical breakdown of coating materials is not available. It is found that a bipolar pressure pair has been developed within a finite thin coating medium, locations near the laser focal spot experience higher stresses, and shorter duration laser pulses lead to higher thermoelastic stresses. This study will help understand the photomechanical stress and its relevance with biomaterial damage in laser-assisted cell direct writing.

Author(s):  
Wei Wang ◽  
Yafu Lin ◽  
Yong Huang

Laser-assisted cell direct-write technique has been a promising biomaterial direct-write method. For safe and reproducible cell direct writing, cell injury due to process-induced external stress must be understood in addition to biological property research. The objective of this study is to model the thermoelastic stress wave propagation inside the coating in laser-assisted cell direct writing when vaporization and/or optical breakdown of coating materials is/are not available. It is found that a bipolar pressure pair, with peak magnitudes on the order of 1 MPa or higher, has been developed within a finite thin coating medium. Shorter duration laser pulses lead to higher thermoelastic stresses. This study will help to understand the photomechanical stress and its relevance with biomaterial damage in laser-assisted cell direct writing.


2013 ◽  
Vol 7 (3) ◽  
pp. 353-358 ◽  
Author(s):  
Cai Renye ◽  
◽  
Huang Jin ◽  

Cell direct-write, a promising technology for the creation of complex, three-dimensional tissue constructs, has great potential in tissue engineering, biological cytology, high-throughput drug screening and cell sensors. However, it has been found that cell damage due to the mechanical impact during cell direct-write is a possible hurdle for broad applications of fragile cell direct writing. The objective of this paper is to analyze the impact of the continuously jetted cell droplets on the hydro-gel coating substrate. In order to avoid the element distortion due to large-scale deformation, a mesh-free Smooth Particle Hydrodynamic method (SPH), is introduced to study the impact-induced cell mechanical loading profile during cell landing, including effective stress, plastic strain, velocity and acceleration, for better understanding and prediction of possible impact-induced cell damage. It is found that three important impact processes, cell-hydrogel, cellcell and cell-substrate impact, may occur during cell landing. It is concluded to decrease impact-induced cell damage, there are an appropriate firing period and jetting velocity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 123
Author(s):  
Zhong Lijing ◽  
Roman A. Zakoldaev ◽  
Maksim M. Sergeev ◽  
Andrey B. Petrov ◽  
Vadim P. Veiko ◽  
...  

Laser direct writing technique in glass is a powerful tool for various waveguides’ fabrication that highly develop the element base for designing photonic devices. We apply this technique to fabricate waveguides in porous glass (PG). Nanoporous optical materials for the inscription can elevate the sensing ability of such waveguides to higher standards. The waveguides were fabricated by a single-scan approach with femtosecond laser pulses in the densification mode, which resulted in the formation of a core and cladding. Experimental studies revealed three types of waveguides and quantified the refractive index contrast (up to Δn = 1.2·10−2) accompanied with ~1.2 dB/cm insertion losses. The waveguides demonstrated the sensitivity to small objects captured by the nanoporous framework. We noticed that the deposited ethanol molecules (3 µL) on the PG surface influence the waveguide optical properties indicating the penetration of the molecule to its cladding. Continuous monitoring of the output near field intensity distribution allowed us to determine the response time (6 s) of the waveguide buried at 400 µm below the glass surface. We found that the minimum distinguishable change of the refractive index contrast is 2 × 10−4. The results obtained pave the way to consider the waveguides inscribed into PG as primary transducers for sensor applications.


Author(s):  
Toshiyuki Sawa ◽  
Yuya Hirayama ◽  
He Dan

The stress wave propagation and stress distribution in scarf adhesive joints have been analyzed using three-dimensional finite element method (FEM). The FEM code employed was LS-DYNA. An impact tensile loading was applied to the joint by dropping a weight. The effect of the scarf angle, Young’s modulus of the adhesive and adhesive thickness on the stress wave propagations and stress distributions at the interfaces have been examined. As the results, it was found that the point where the maximum principal stress becomes maximum changes between 52 degree and 60 degree under impact tensile loadings. The maximum value of the maximum principal stress increases as scarf angle decreases, Young’s modulus of the adhesive increases and adhesive thickness increases. In addition, Experiments to measure the strains and joint strengths were compared with the calculated results. The calculated results were in fairly good agreements with the experimental results.


2010 ◽  
Vol 70 (12) ◽  
pp. 1669-1673 ◽  
Author(s):  
Yangwei Wang ◽  
Fuchi Wang ◽  
Xiaodong Yu ◽  
Zhuang Ma ◽  
Jubin Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document