scholarly journals Synthesis of Manufacturing and Facility Data for Sustainability Analysis

Author(s):  
John Michaloski ◽  
Goudong Shao ◽  
Frank Riddick ◽  
Swee Leong ◽  
Jonatan Berglund ◽  
...  

This paper discusses data synthesis of production and facility knowledge for sustainability analysis by applying the ISA–95 “Activity Models of Manufacturing Operations Management” (MOM) model. Presently, production and facility management basically function independently of each other. This paper presents the addition of facility activities to the MOM model, in accordance with the needs for attaining a holistic view of sustainability analysis. Historically, production and facility data are represented in various forms, e.g., data bases, CAD, and spread-sheets, without a common unifying representation. Based on this combination of incompatible modeling tools, the use of Core Manufacturing Simulation Data (CMSD) is proposed as a standard framework for integrating the broad range of technology. A case study of the data synthesis for a precision sand casting production facility is explored.

2020 ◽  
Vol 12 (13) ◽  
pp. 5260
Author(s):  
Gyusun Hwang ◽  
Jun-Hee Han ◽  
Tai-Woo Chang

This paper proposes a comprehensive production performance measurement framework and illustrates the method to evaluate the performance and guide practitioners to make further improvement. The development comprises four steps. (1) Performance indicators derived from business excellence models are enumerated to provide the performance model: 74 indicators, which can be classified in terms of their characteristics, are identified in six criteria. (2) A multiple criteria decision-making approach based on the analytic hierarchical and network processes, which determine the weights of the criteria and indicators, is applied. In addition, this study introduced additional formulas to derive the final performance values. (3) A performance measurement framework that integrates the measurement and result analysis processes is implemented. (4) The proposed framework is verified through a case study. The results of the case study show that the proposed framework identifies the gaps and discrepancies among the management levels, enabling the determination of means for continuous improvement.


2019 ◽  
Vol 9 (1) ◽  
pp. 561-570
Author(s):  
Khoa Dang ◽  
Igor Trotskii

AbstractEver growing building energy consumption requires advanced automation and monitoring solutions in order to improve building energy efficiency. Furthermore, aggregation of building automation data, similarly to industrial scenarios allows for condition monitoring and fault diagnostics of the Heating, Ventilations and Air Conditioning (HVAC) system. For existing buildings, the commissioned SCADA solutions provide historical trends, alarms management and setpoint curve adjustments, which are essential features for facility management personnel. The development in Internet of Things (IoT) and Industry 4.0, as well as software microservices enables higher system integration, data analytics and rich visualization to be integrated into the existing infrastructure. This paper presents the implementation of a technology stack, which can be used as a framework for improving existing and new building automation systems by increasing interconnection and integrating data analytics solutions. The implementation solution is realized and evaluated for a nearly zero energy building, as a case study.


2019 ◽  
Vol 30 (19) ◽  
pp. 2435-2438 ◽  
Author(s):  
Jonah Cool ◽  
Richard S. Conroy ◽  
Sean E. Hanlon ◽  
Shannon K. Hughes ◽  
Ananda L. Roy

Improvements in the sensitivity, content, and throughput of microscopy, in the depth and throughput of single-cell sequencing approaches, and in computational and modeling tools for data integration have created a portfolio of methods for building spatiotemporal cell atlases. Challenges in this fast-moving field include optimizing experimental conditions to allow a holistic view of tissues, extending molecular analysis across multiple timescales, and developing new tools for 1) managing large data sets, 2) extracting patterns and correlation from these data, and 3) integrating and visualizing data and derived results in an informative way. The utility of these tools and atlases for the broader scientific community will be accelerated through a commitment to findable, accessible, interoperable, and reusable data and tool sharing principles that can be facilitated through coordination and collaboration between programs working in this space.


Author(s):  
Sebastian Klemenz ◽  
Andreas Stegmüller ◽  
Songhak Yoon ◽  
Claudia Felser ◽  
Harun Tüysüz ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


Forecasting ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 322-338
Author(s):  
Marvin Carl May ◽  
Alexander Albers ◽  
Marc David Fischer ◽  
Florian Mayerhofer ◽  
Louis Schäfer ◽  
...  

Currently, manufacturing is characterized by increasing complexity both on the technical and organizational levels. Thus, more complex and intelligent production control methods are developed in order to remain competitive and achieve operational excellence. Operations management described early on the influence among target metrics, such as queuing times, queue length, and production speed. However, accurate predictions of queue lengths have long been overlooked as a means to better understanding manufacturing systems. In order to provide queue length forecasts, this paper introduced a methodology to identify queue lengths in retrospect based on transitional data, as well as a comparison of easy-to-deploy machine learning-based queue forecasting models. Forecasting, based on static data sets, as well as time series models can be shown to be successfully applied in an exemplary semiconductor case study. The main findings concluded that accurate queue length prediction, even with minimal available data, is feasible by applying a variety of techniques, which can enable further research and predictions.


2021 ◽  
Author(s):  
M. S. M. Effendi ◽  
Z. Shayfull ◽  
H. Radhwan ◽  
Izanoordina Ahmad ◽  
Shafeeq Ahmad Shamim Ahmad ◽  
...  

2021 ◽  
Author(s):  
Suresh Muthulingam ◽  
Suvrat Dhanorkar ◽  
Charles J. Corbett

It is well known that manufacturing operations can affect the environment, but hardly any research explores whether the natural environment shapes manufacturing operations. Specifically, we investigate whether water scarcity, which results from environmental conditions, influences manufacturing firms to lower their toxic releases to the environment. We created a data set that spans 2000–2016 and includes details on the toxic emissions of 3,092 manufacturing facilities in Texas. Additionally, our data set includes measures of the water scarcity experienced by these facilities. Our econometric analysis shows that manufacturing facilities reduce their toxic releases into the environment when they have experienced drought conditions in the previous year. We examine facilities that release toxics to water as well as facilities with no toxic releases to water. We find that the reduction in total releases (to all media) is driven mainly by those facilities that release toxic chemicals to water. Further investigation at a more granular level indicates that water scarcity compels manufacturing facilities to lower their toxic releases into media other than water (i.e., land or air). The impact of water scarcity on toxic releases to water is more nuanced. A full-sample analysis fails to link water scarcity to lower toxic releases to water, but a further breakdown shows that manufacturing facilities in counties with a higher incidence of drought do lower their toxic releases to water. We also find that facilities that release toxics to water undertake more technical and input modifications to their manufacturing processes when they face water scarcity. This paper was accepted by David Simchi-Levi, operations management.


Sign in / Sign up

Export Citation Format

Share Document