A Critical Factor in Enhancement of MQL Lubricants: Platelet Thickness

Author(s):  
Trung Kien Nguyen ◽  
Patrick Y. Kwon ◽  
Kyung-Hee Park

The lamellar-type solid lubricants are readily available in a form of platelets. The diameter and thickness of these platelets are typically up to tens of microns and few microns, respectively, which are classified as micro-platelets. Some of these platelets are also available as nano-platelets whose thickness is well below a micron (even to few nanometers). In the previous work, the vegetable oil mixed with nano-platelets was enormously effective for Minimum Quantity Lubrication (MQL) machining. Clearly, the micro-platelets are not as inexpensive. In addition, the mixtures with the micro-platelets are not as stable as those with the nano-platelets. This paper intends to find the effect of the thickness differential on these platelets in MQL machining. The tribometer test shows that the nano-platelets are much more effective than the micro-platelets in reducing wear without changing the friction. With the MQL ball mill experiment, the micro-platelets present in MQL oil increased the tool wear, even compared to the traditional MQL with pure oil only. Thus, the thickness of the nano-platelets holds an important characteristic to enhance MQL-based machining.

Author(s):  
Trung Kien Nguyen ◽  
Kyung-Hee Park ◽  
Patrick Y. Kwon

This paper studies the effect of various lamellar-type solid lubricants (graphite and hBN) that can be mixed into a lubricant to potentially improve the machinability of minimum quantity lubrication (MQL) machining. To examine this, the solid lubricants are classified into particles and platelets based on their aspect ratios as well as their respective sizes. In particular, the particles are classified into microparticles and nanoparticles based on their dimensions (average radius), while the platelets were classified, based on their average thickness, into two types: the “microplatelets” if the thickness is typically up to few tens of microns and the “nanoplatelets” if the thickness is well below a tenth of a micron (even down to few nanometers). Our previous work has shown that the mixture of an extremely small amount (about 0.1 wt. %) of the graphitic nanoplatelets and vegetable oil immensely enhanced the machinability of MQL machining. In this paper, many lubricants, each mixed with a particular variety of nano- or micro-platelets or one type of nanoparticles, were studied to reveal the effect of each solid lubricant on MQL machining. Prior to the MQL machining experiment, the tribological test was conducted to show that the nanoplatelets are overall more effective than the microplatelets and nanoparticles in minimizing wear despite of no significant difference in friction compared to pure vegetable oil. Consequently, the MQL ball-milling experiment was conducted with AISI 1045 steel yielding a similar trend. Surprisingly, the oil mixtures with the microplatelets increased flank wear, even compared to the pure oil lubricant when the tools with the smooth surface were used. Thus, the nanoscale thickness of these platelets is a critical requirement for the solid lubricants in enhancing the MQL machining process. However, maintaining the nanoscale thickness is not critical with the tools with the rough surfaces in enhancing the MQL process. Therefore, it is concluded that finding an optimum solid lubricant depends on not only the characteristics (material as well as morphology) of solid lubricants but also the characteristic of tool surface.


2020 ◽  
Vol 997 ◽  
pp. 85-92
Author(s):  
Abang Mohammad Nizam Abang Kamaruddin ◽  
Abdullah Yassin ◽  
Shahrol Mohamaddan ◽  
Syaiful Anwar Rajaie ◽  
Muhammad Isyraf Mazlan ◽  
...  

One of the most significant factors in machining process or metal cutting is the cutting tool performance. The rapid wear rate of cutting tools and cutting forces expend due to high cutting temperature is a critical problem to be solved in high-speed machining process, milling. Near-dry machining such as minimum quantity lubrication (MQL) is regarded as one of the solutions to solve this problem. However, the function of MQL in milling process is still uncertain so far which prevents MQL from widely being utilized in this specific machining process. In this paper, the mechanism of cutting tool performance such as tool wear and cutting forces in MQL assisted milling is investigated more comprehensively and the results are compared in three different cutting conditions which is dry cutting, wet cutting (flooding) and MQL. The MQL applicator is constructed from a household grade low-cost 3D printing technique. The chips surface of chips formation in each cutting condition is also observed using Scanning Electron Microscopy (SEM) machine. It is found out that wet cutting (flooding) is the best cutting performance compare to MQL and dry cutting. However, it can also be said that wet cutting and MQL produced almost the same value of tool wear and cutting forces as there is negligible differences in average tool wear and cutting forces between them based on the experiment conducted.


Author(s):  
Pushparghya Deb Kuila ◽  
Shreyes Melkote

Laser-assisted micromilling is a promising micromachining process for difficult-to-cut materials. Laser-assisted micromilling uses a laser to thermally soften the workpiece in front of the cutting tool, thereby lowering the cutting forces, improving the dimensional accuracy, and reducing the tool wear. Thermal softening, however, causes the workpiece material to adhere to the tool and form a built-up edge. To mitigate this problem and to enhance micromachinability of the workpiece in laser-assisted micromilling, this article investigates the following lubrication and cooling methods: (1) minimum quantity lubrication and (2) vortex tube cooling. Experiments utilizing the two methods are carried out on a difficult-to-cut stainless steel (A286), and the surface morphology, tool condition, burr formation, groove dimensional accuracy, surface finish, and cutting forces are analyzed. Results show that the combination of laser-assisted micromilling and minimum quantity lubrication yields the least amount of tool wear, lower resultant force, better groove dimensional accuracy, and no built-up edge. While vortex tube cooling with laser-assisted micromilling produces smaller burrs compared to minimum quantity lubrication, it yields larger changes in groove dimensions and is characterized by built-up edge formation. Possible physical explanations for the experimental observations are given.


2017 ◽  
Author(s):  
Mayur A. Makhesana ◽  
Kaushik M. Patel

Machining is the manufacturing process, capable of producing required shape and size by material removal. In recent times industries are striving to enhance the performance of machining processes. One of the problem associated with machining is the amount of heat generation as a result of friction between tool and workpiece. Heat generated may affect the quality of machined surface and tool wear. In order to control it, cutting fluid is applied in large quantity. The problem arises with the use of cutting fluid is its effect on worker’s health and environment. The present investigation is an attempt to explore the use the solid lubricants in machining as an alternative to cutting fluid. The work involves development of minimum quantity solid lubrication set up. Turning experiments has been performed by applying solid lubricants mixed with cutting fluid in minimum quantity. The performance of minimum quantity solid lubrication has been assessed in form of obtained surface finish, power consumption and tool wear during turning. Experimental findings discovered the superiority of minimum quantity solid lubrication over conventional cutting fluid and can be considered as cost effective and sustainable lubrication method.


Sign in / Sign up

Export Citation Format

Share Document