A New Joint Data-Model Driven Dynamic Scheduling Architecture for Intelligent Workshop

Author(s):  
Kunkun Peng ◽  
Xinyu Li ◽  
Liang Gao ◽  
Xi (Vincent) Wang ◽  
Yiping Gao

Abstract Intelligent manufacturing plays a significant role in Industry 4.0. Dynamic shop scheduling is a key problem and hot research topic in the intelligent manufacturing systems, which is NP-hard. However, traditional shop scheduling mode, dynamic event prediction approach, scheduling model and scheduling algorithm, cannot cope with increasingly complicated problems under kinds of scales production disruptions in the real-world production. To deal with these problems, this paper proposes a new joint data-model driven dynamic scheduling architecture for intelligent workshop. The architecture includes four new and key characteristics in the aspects of scheduling mode, dynamic event prediction, scheduling model and algorithm. More specifically, the new scheduling mode introduces data analytics methods to quickly and accurately deal with the dynamic events encountered in the production process. The new prediction model improves the deep learning method, and further applies it predict the dynamic events accurately to provide reliable input to the dynamic scheduling. The new scheduling model proposes a new hybrid rescheduling and inverse scheduling model, which can cope with almost scales of abnormal production problems. The new scheduling algorithm hybridizes dynamic programming and intelligent optimization algorithm, which can overcome the disadvantages of the two methods based on the analysis of solution space. The dynamic programming is employed to provide high-quality initial solutions for the intelligent optimization algorithm by reducing the computation time greatly. To sum up, the presented architecture is a new attempt to understand the problem domain knowledge and broaden the solving idea, which can also provide new theories and technologies to manufacturing system optimization and promote the applications of the theoretical results.

2012 ◽  
Vol 217-219 ◽  
pp. 505-510
Author(s):  
Yong Liang Zhou

Gas is a key byproduct of the iron and steel process, and the scheduling of gas is the most valuable one in Energy Management System. The production and consumption of the byproduct gas will be related to many sub-processes and tends to encounter imbalance problems. One GAP-like optimization model of gas scheduling is setup, where there are 3 key objectives, minimization of emission, external energy purchasing and instability of the byproduct gas system. The model is NP-Hard and can be find the solution by using intelligent optimization algorithm to realize the static and dynamic scheduling.


Author(s):  
Dong Han ◽  
Wangming Li ◽  
Xinyu Li ◽  
Liang Gao ◽  
Yang Li

Abstract As we all know, the COVID-19 pandemic brought a great challenge to manufacturing industry, especially for some traditional and unstable manufacturing systems. It reminds us that intelligent manufacturing certainly will play a key role in the future. Dynamic shop scheduling is also an inevitable hot topic in intelligent manufacturing. However, traditional dynamic scheduling is a kind of passive scheduling mode which takes measures to adjust disturbed scheduling processes after the occurrence of dynamic events. It is difficult to ensure the stability of production because of lack of proactivity. To overcome these shortcomings, manufacturing big data and data technologies as the core driving force of intelligent manufacturing will be used to guide production. Thus, a data-driven proactive scheduling approach is proposed to deal with the dynamic events, especially for machine breakdown. In this paper, the overall procedure of the proposed approach is introduced. More specifically, we first use collected manufacturing data to predict the occurrence of machine breakdowns and provide reliable input for dynamic scheduling. Then a proactive scheduling model is constructed for the hybrid flow shop problem, and an intelligent optimization algorithm is used to solve the problem to realize proactive scheduling. Finally, we design comparative experiments with two traditional rescheduling strategies to verify the effectiveness and stability of the proposed approach.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Wenxiang Xu ◽  
Shunsheng Guo ◽  
Xixing Li ◽  
Chen Guo ◽  
Rui Wu ◽  
...  

Aiming at the logistics dynamic scheduling problem in an intelligent manufacturing workshop (IMW), an intelligent logistics scheduling model and response method with Automated Guided Vehicles (AGVs) based on the mode of “request-scheduling-response” were proposed, and they were integrated with Internet of Things (IoT) to meet the demands of dynamic and real time. Correspondingly, a mathematical model was developed and integrated with a double-level hybrid genetic algorithm and ant colony optimization (DLH-GA-ACO) to minimize the finish time with the minimum AGVs and limited time. The mathematical model optimized the logistics scheduling process on two dimensions which include the sequence of tasks assigned to an AGV and the matching relation between transfer tasks and AGVs (AGV-task). The effectiveness of the model was verified by a set of experiments, and comparison among DLH-GA-ACO, hybrid genetic algorithm and particle swarm optimization (H-GA-PSO), and tabu search algorithm (TSA) was performed. In the experiments, the DLH-GA-ACO ran in a distributed environment for a faster computing speed. According to the comparisons, the superiority and effectiveness of DLH-GA-ACO on dynamic simultaneous scheduling problem were proved and the intelligent logistics scheduling model was also proved to be an effective model.


2013 ◽  
Vol 33 (3) ◽  
pp. 862-865
Author(s):  
Shuangzhi DU ◽  
Yong WANG ◽  
Xiaoling TAO

2020 ◽  
Vol 53 (2) ◽  
pp. 15041-15046
Author(s):  
Ala Din Trabelsi ◽  
Hend Marouane ◽  
Emna Bouhamed ◽  
Faouzi Zarai

2014 ◽  
Vol 519-520 ◽  
pp. 108-113 ◽  
Author(s):  
Jun Chen ◽  
Bo Li ◽  
Er Fei Wang

This paper studies resource reservation mechanisms in the strict parallel computing grid,and proposed to support the parallel strict resource reservation request scheduling model and algorithms, FCFS and EASY backfill analysis of two important parallel scheduling algorithm, given four parallel scheduling algorithms supporting resource reservation. Simulation results of four algorithms of resource utilization, job bounded slowdown factor and the success rate of Advanced Reservation (AR) jobs were studied. The results show that the EASY backfill + firstfit algorithm can ensure QoS of AR jobs while taking into account the performance of good non-AR jobs.


2021 ◽  
Vol 21 (3) ◽  
pp. 1-33
Author(s):  
Qianmu Li ◽  
Shunmei Meng ◽  
Xiaonan Sang ◽  
Hanrui Zhang ◽  
Shoujin Wang ◽  
...  

Volunteer computing uses computers volunteered by the general public to do distributed scientific computing. Volunteer computing is being used in high-energy physics, molecular biology, medicine, astrophysics, climate study, and other areas. These projects have attained unprecedented computing power. However, with the development of information technology, the traditional defense system cannot deal with the unknown security problems of volunteer computing . At the same time, Cyber Mimic Defense (CMD) can defend the unknown attack behavior through its three characteristics: dynamic, heterogeneous, and redundant. As an important part of the CMD, the dynamic scheduling algorithm realizes the dynamic change of the service centralized executor, which can enusre the security and reliability of CMD of volunteer computing . Aiming at the problems of passive scheduling and large scheduling granularity existing in the existing scheduling algorithms, this article first proposes a scheduling algorithm based on time threshold and task threshold and realizes the dynamic randomness of mimic defense from two different dimensions; finally, combining time threshold and random threshold, a dynamic scheduling algorithm based on multi-level queue is proposed. The experiment shows that the dynamic scheduling algorithm based on multi-level queue can take both security and reliability into account, has better dynamic heterogeneous redundancy characteristics, and can effectively prevent the transformation rule of heterogeneous executors from being mastered by attackers.


Sign in / Sign up

Export Citation Format

Share Document