A Hybrid Physical Model Based Artificial Neural Network Approach to Predict Surface Texture in the Honing of Engine Cylinder Bore

Author(s):  
Burhan Afzel ◽  
Xueping Zhang ◽  
Anil K. Srivastava

Abstract This study proposes a hybrid model that utilizes a physical model and Artificial Neural Networks (ANN) approach to predict surface roughness during cylinder bore honing with an improved prediction efficiency of 90% compared to the standalone physical model. As a critical component of internal combustion engine technology, improvement in the surface roughness of cylinder bore can significantly reduce friction, wear and oil consumption, resulting in improved engine performance. Desired surface roughness in cylinder bore is imparted by honing, which serves as the terminal process in cylinder bore manufacturing. The cylinder bore honing process consists of rough honing, fine honing, and plateau honing stage. Each stage further involves variables such as honing stone geometry, grain size, grain concentration, honing speed, pressure, feed, over travel, number of strokes, etc. In literature, different approaches have been proposed to determine the influence of process parameters on the surface roughness of the honed cylinder bore. However, these approaches have their limitations. Experimental based studies are limited by the number of parameters that can be considered, analytical analysis methods involve extensive calculations resulting in reduced computational efficiency and accuracy, while machine learning approaches require a large amount of data. To overcome these limitations, this study employs a hybrid model to investigate the evolution of roughness at the rough and fine stage of the honing process. A two-phase approach is employed; first, a physical model is used to determine the surface roughness using various parameters. Secondly, these results are applied to train the ANN that can predict surface roughness for new parameters with a difference of less than 10% from the physical model.

2021 ◽  
pp. 1-25
Author(s):  
Burhan Afzal ◽  
Xueping Zhang ◽  
Anil Srivastava

Abstract Cylinder bore honing is a finishing process that generates a crosshatch pattern with alternate valleys and plateaus responsible for enhancing lubrication and preventing gas and oil leakage in the engine cylinder bore. The required functional surface in the cylinder bore is generated by a sequential honing process and is characterized by Rk roughness parameters (Rk, Rvk, Rpk, Mr1, Mr2). Predicting the desired surface roughness relies primarily on two techniques: (i) analytical models (AM) and (ii) machine learning (ML) models. Both of these techniques offer certain advantages and limitations. AM's are interpretable as they indicate distinct mapping relation between input variables and honed surface texture. However, AM's are usually based on simplified assumptions to ensure the traceability of multiple variables. Consequently, their prediction accuracy is adversely impacted when these assumptions are not satisfied. However, ML models accurately predict the surface texture but their prediction mechanism is challenging to interpret. Furthermore, the ML models' performance relies heavily on the representativeness of data employed in developing them. Thus, either prediction accuracy or model interpretability suffers when AM and ML models are implemented independently. This study proposes a hybrid model framework to incorporate the benefits of AM and ML simultaneously. In the hybrid model, an Artificial neural network (ANN) compensates the AM by correcting its error. This retains the physical understanding built into the model while simultaneously enhancing the prediction accuracy. The proposed approach resulted in a hybrid model that significantly improved the prediction accuracy of the AM and additionally provided superior performance compared to independent ANN.


Sign in / Sign up

Export Citation Format

Share Document