A Study on Micro-Milling Process of Multi-Directional Carbon Fiber Reinforced Plastic Composite Using Nano-Solid Dry Lubrication

Author(s):  
Jin Woo Kim ◽  
Jungsoo Nam ◽  
Jaehun Jeon ◽  
Sang Won Lee

Abstract In this research, the micro-milling process using nano-solid dry lubrication is studied for machining multidirectional carbon fiber reinforced plastic (MD-CFRP). For the nano-solid dry lubrication, two kinds of graphene nanoplatelets and multiwall carbon nanotubes are used as nanoparticles. The workpiece is an MD-CFRP composite in which 10 plies of prepreg are laminated and it consists of four carbon fiber orientations — 0°, 45°, 90°, 135°. After a series of micro-milling experiments, the workpiece surface quality and tool wear are investigated. Overall, it is found that the nano-solid dry lubrication can improve the surface quality and reduce the tool wear. In particular, larger graphene nanoplatelets (xGnP H-5) are more advantageous than smaller graphene nanoplatelets (xGnP C-750). In addition, multiwall carbon nanotubes having a tube-shape structure are less effective than graphene nanoplatelets having a two-dimensional thin sheet shape for enhancing the micro-milling performances, which may be due to better lubrication effect with the graphene nanoplatelets’ sliding phenomenon at the cutting region.

Author(s):  
Jin Woo Kim ◽  
Jungsoo Nam ◽  
Sang Won Lee

Abstract In this research, the micro-milling process using nano-solid dry lubrication is studied for machining multidirectional carbon fiber reinforced plastic (MD-CFRP). For this lubrication, two kinds of graphene nanoplatelets and multiwall carbon nanotubes are used as nanoparticles. The workpiece is an MD-CFRP composite in which 10 plies of prepreg are laminated and it consists of four carbon fiber orientations - 0°, 45°, 90°, 135°. The micro-milling experiments are conducted, and the workpiece surface quality and tool wear are investigated. As a result, it is confirmed that the nano-solid dry lubrication can improve the surface quality and reduce the tool wear. In particular, larger graphene nanoplatelets (xGnP H-5) are more advantageous than smaller graphene nanoplatelets (xGnP C-750). In addition, multiwall carbon nanotubes having a tube-shape structure are less effective than graphene nanoplatelets having a two-dimensional thin sheet shape for enhancing the micro-milling performances, which may be due to better lubrication effect with the graphene nanoplatelets' sliding phenomenon at the cutting region.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 685
Author(s):  
Jin Woo Kim ◽  
Jungsoo Nam ◽  
Jaehun Jeon ◽  
Sang Won Lee

The objective of this study is to investigate the tribological behavior of graphene nanoplatelets (xGnPs) as nano-solid lubricants, and to evaluate their applicability to the micro-drilling of multi-directional carbon fiber-reinforced plastic (MD-CFRP). To verify the tribological effect of nano-solid lubricants, three kinds of xGnPs (xGnP C-750, xGnP M-5, and xGnP H-5), multiwall carbon nanotubes (MWCNTs), and hBN are compared by the ball-on-plate test. Of these, three xGnPs are selected as nano-solid lubricants to investigate the micro-drilling performance of MD-CFRP using nano-solid dry lubrication, and the experimental results demonstrate that all xGnPs can enhance lubrication action in terms of surface quality (delamination, uncut fiber, and inner surface) and tool wear. In particular, larger graphene nanoplatelets (xGnP M-5 and xGnP H-5) are superior to the smaller one (xGnP C-750) by guaranteeing enhanced sliding action between the tool grain and the CFRP composite.


2018 ◽  
Vol 20 (2) ◽  
pp. 137
Author(s):  
A. Yermakhanova ◽  
M. Ismailov

The epoxy resin in the form of Etal Inject-T compound, Sigratex KDK carbon fabric, Taunit-M carbon nanotubes conditionally named as CNT-1, as well as functionalized (modified) variety of them by grafting to the surface of new chemical groups: carboxylated ‒ CNT-2, carboxyl-hydroxylated ‒ CNT-3, amidated ‒ CNT-4 were used in the work. The experiments were performed on the compression strength and bending strength of the samples. The injection of CNT-1 into epoxy resin or carbon fiber reinforced plastic did not produce the hardening. The injection of 0.05% of CNT-2 into the epoxy resin had the following effect: there is no influence in the area of quasielastic strains, the hardening was up to 25% in the areas of plastic and elastic-plastic strain. The injection of 0.15% of functionalized carbon nanotubes into the carbon fiber reinforced plastic produced the hardening for compression with CNT-2 ‒ 6%, CNT-3 ‒ 12%, CNT-4 – 17%, for bending – CNT-2 – 44%, CNT-3 – 59%, CNT-4 – 132%. It is established that with an increase in the strain rate of epoxy resin from 1 to 5 mm/min the areas of plastic and elastic-plastic strain gradually are reduced, there is only quasielastic strain with brittle fracture at 20 mm/ min, this value can be accepted as its strength characteristic. With an increase in the strain rate of carbon fiber reinforced plastic from 1 to 20 mm/min the compression strength gradually increases from 398 MPa to 425 MPa, and then stabilizes.


2020 ◽  
Vol 20 (11) ◽  
pp. 6862-6870
Author(s):  
Mi-Kyoung Hong ◽  
Woong-Ki Choi ◽  
Jong-Hyun Park ◽  
Yun-Su Kuk ◽  
Byoung-Suhk Kim ◽  
...  

The mechanical properties and damping behavior of carbon fiber-reinforced plastic composites with functionalized multi-walled carbon nanotubes were examined. The functionalized multi-walled carbon nanotubes were blended with epoxy resins to prepare multi-walled carbon nanotubes/carbon fiber-reinforced plastic composites. The dispersion properties of functionalized multi-walled carbon nanotubes in epoxy resins were examined using surface free energy. The mechanical properties of functionalized multi-walled carbon nanotubes/carbon fiber-reinforced plastic composites were measured by interlaminar shear strength and torsion strength. The functionalized multi-walled carbon nanotubes/carbon fiber-reinforced plastic composites had superior mechanical properties due to the increase in dispersion properties of functionalized multi-walled carbon nanotubes in epoxy resins. However, the tan delta values of damping behavior, analyzed by dynamic mechanical analysis, varied with the type of functional groups of functionalized multi-walled carbon nanotubes. The composites obtained from functionalized multi-walled carbon nanotubes obtained through spermidine amidation reaction and carbon fiber-reinforced plastic showed excellent tan delta values due to the flexible segments in side chains.


2016 ◽  
Vol 37 (19) ◽  
pp. 1177-1190 ◽  
Author(s):  
Tsung-Han Hsieh ◽  
Wei-Jen Chen ◽  
Chin-Lung Chiang ◽  
Ming-Yuan Shen

Graphene nanoplatelets are two-dimensional carbon structure materials with single or multilayers graphite plane which possesses attractive characteristics. In this study, the environmental aging effect on interlaminar properties of graphene nanoplatelet containing different proportions (0.25, 0.50, 0.75 wt%) reinforced epoxy/carbon fiber (carbon fiber reinforced plastic) composite laminates including interlaminar shear strength and fracture toughness were investigated. The interlaminar properties of graphene nanoplatelets/carbon fiber reinforced plastic composite laminates were improved over that of neat carbon fiber reinforced plastic composite laminates. Experimental results showed that the composite laminates containing graphene nanoplatelets possesses the appreciable improvement. The mechanisms responsible for the interlaminar enhancement were identified by studying the fracture surfaces using field emission scanning electron microscopy.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 576
Author(s):  
Liang Luo ◽  
Jie Lai ◽  
Jun Shi ◽  
Guorui Sun ◽  
Jie Huang ◽  
...  

This paper investigates the working performance of reinforcement concrete (RC) beams strengthened by Carbon-Fiber-Reinforced Plastic (CFRP) with different anchoring under bending moment, based on the structural stressing state theory. The measured strain values of concrete and Carbon-Fiber-Reinforced Plastic (CFRP) sheet are modeled as generalized strain energy density (GSED), to characterize the RC beams’ stressing state. Then the Mann–Kendall (M–K) criterion is applied to distinguish the characteristic loads of structural stressing state from the curve, updating the definition of structural failure load. In addition, for tested specimens with middle anchorage and end anchorage, the torsion applied on the anchoring device and the deformation width of anchoring device are respectively set parameters to analyze their effects on the reinforcement performance of CFRP sheet through comparing the strain distribution pattern of CFRP. Finally, in order to further explore the strain distribution of the cross-section and analyze the stressing-state characteristics of the RC beam, the numerical shape function (NSF) method is proposed to reasonably expand the limited strain data. The research results provide a new angle of view to conduct structural analysis and a reference to the improvement of reinforcement effect of CFRP.


Sign in / Sign up

Export Citation Format

Share Document