Nanoscale Heat Conduction in Data Storage Technology

Author(s):  
Mehdi Asheghi

The magnetic data storage industry has followed a similar density (and data rate) improvement curve as the semiconductor technology (Moore’s Law) for the past decade. However, whether the storage densities will continue to increase at this rate and be able to keep up with the improvements in processor technology is under a near term threat resulting from the fundamental physics up on which the hard disk drives are based. It is expected that novel, more unconventional technological solutions become necessary to overcome limitations, however, many of these technologies rely heavily on heating and energy transport at extremely short time and length scales. It is widely believed that further advances in high-technology data storage systems will be difficult, if not impossible, without rigorous treatment of the nano-scale energy transport. The nano-scale heat transfer research effort at Data Storage System Center (DSSC) has been focused on three interwoven areas of thermal design, failure analysis, and metrology of micro/nano-devices and structures relevant to data storage technologies. In this presentation, underlying physics and fundamentals of heat transport at nanoscale will be discussed. In addition, applications of the nanoscale heat transfer to the thermal analyses of the magnetic and phase change optical data storage technologies will be presented.

Author(s):  
Mehdi Asheghi ◽  
Yizhang Yang ◽  
Sadegh M. Sadeghipour ◽  
James A. Bain ◽  
Katayun Barmak ◽  
...  

By all measures, the data storage industry is one of the most important components of the Information Technology (IT) revolution. In recent years, many of the emerging technologies rely heavily on energy transport at extremely short time and length scales as a mean to overcome the superparamagnetic limit - a serious impediment to future advancement of storage technology. Additionally, thermally induced failure and reliability issues at the nanoscale are becoming increasingly important due to rapid device miniaturization in data storage applications. Further advances in high-technology data storage systems will be difficult, if not impossible, without rigorous treatment of nanoscale energy transport. This manuscript reviews the thermal design issues and challenges in thermally assisted magnetic disk recording, thermally assisted scanned probe recording, phase change optical data recording, magnetoresistive random access memory (MRAM) and giant magnetoresistive (GMR) heads. Relevant thermally induced failures in GMR heads, write coil, interconnects and MRAM will be discussed as well.


2011 ◽  
Vol 47 (3) ◽  
pp. 669-678 ◽  
Author(s):  
No-Cheol Park ◽  
Young-Pil Park ◽  
Kyoung-Su Park ◽  
Hyunseok Yang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Mihai ◽  
F. Sava ◽  
I. D. Simandan ◽  
A. C. Galca ◽  
I. Burducea ◽  
...  

AbstractThe lack of order in amorphous chalcogenides offers them novel properties but also adds increased challenges in the discovery and design of advanced functional materials. The amorphous compositions in the Si–Ge–Te system are of interest for many applications such as optical data storage, optical sensors and Ovonic threshold switches. But an extended exploration of this system is still missing. In this study, magnetron co-sputtering is used for the combinatorial synthesis of thin film libraries, outside the glass formation domain. Compositional, structural and optical properties are investigated and discussed in the framework of topological constraint theory. The materials in the library are classified as stressed-rigid amorphous networks. The bandgap is heavily influenced by the Te content while the near-IR refractive index dependence on Ge concentration shows a minimum, which could be exploited in applications. A transition from a disordered to a more ordered amorphous network at 60 at% Te, is observed. The thermal stability study shows that the formed crystalline phases are dictated by the concentration of Ge and Te. New amorphous compositions in the Si–Ge–Te system were found and their properties explored, thus enabling an informed and rapid material selection and design for applications.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 818
Author(s):  
Xuehua Zhang ◽  
Qian Wang ◽  
Shun Liu ◽  
Wei Zhang ◽  
Fangren Hu ◽  
...  

GeO2/organically modified silane (ormosils) organic-inorganic composite films containing azobenzene were prepared by combining sol-gel technology and spin coating method. Optical waveguide properties including the refractive index and thickness of the composite films were characterized by using a prism coupling instrument. Surface morphology and photochemical properties of the composite films were investigated by atomic force microscope and Fourier transform infrared spectrometer. Results indicate that the composite films have smooth and neat surface, and excellent optical waveguide performance. Photo-isomerization properties of the composite films were studied by using a UV–Vis spectrophotometer. Optical switching performance of the composite films was also studied under the alternating exposure of 365 nm ultraviolet light and 410 nm visible light. Finally, strip waveguides and microlens arrays were built in the composite films through a UV soft imprint technique. Based on the above results, we believe that the prepared composite films are promising candidates for micro-nano optics and photonic applications, which would allow directly integrating the optical data storage and optical switching devices onto a single chip.


Sign in / Sign up

Export Citation Format

Share Document