Numerical Simulation of Cavities Flow

Author(s):  
Jing Hu ◽  
Zhiguo Zhang ◽  
Dakui Feng

Flow across the cavity represents a simple geometry complex flow phenomena for many industry field. This paper presents a series of simulation results of both laminar and turbulent flows over cavities. Several important results and conclusions are reported. The mathematical model corresponds to the incompressible, Reynolds-averaged, Navier-Stokes equations plus a turbulence model, and the numerical simulation is performed using the SIMPLE algorithm.

2011 ◽  
Vol 64 (2) ◽  
Author(s):  
Giancarlo Alfonsi

The direct numerical simulation of turbulence (DNS) has become a method of outmost importance for the investigation of turbulence physics, and its relevance is constantly growing due to the increasing popularity of high-performance-computing techniques. In the present work, the DNS approach is discussed mainly with regard to turbulent shear flows of incompressible fluids with constant properties. A body of literature is reviewed, dealing with the numerical integration of the Navier-Stokes equations, results obtained from the simulations, and appropriate use of the numerical databases for a better understanding of turbulence physics. Overall, it appears that high-performance computing is the only way to advance in turbulence research through the front of the direct numerical simulation.


2013 ◽  
Vol 694-697 ◽  
pp. 56-60
Author(s):  
Yue Jun Ma ◽  
Ji Tao Zhao ◽  
Yu Min Yang

In the paper, on the basis of three-dimensional Reynolds-averaged Navier-Stokes equations and the RNG κ-ε turbulence model, adopting Three-dimensional unstructured grid and pressure connection the implicit correction SIMPLEC algorithm, and using MRF model which is supported by Fluent, this paper carries out numerical simulation of the internal flow of the centrifugal pump in different operation points. According to the results of numerical simulation, this paper analyzes the bad flow phenomena of the centrifugal pump, and puts forward suggests about configuration perfected of the centrifugal pump. In addition, this paper is also predicted the experimental value of the centrifugal pump performance, which is corresponding well with the measured value.


Author(s):  
David Jon Furbish

Many geological flows involve turbulence, wherein the velocity field involves complex, fluctuating motions superimposed on a mean motion. Flows in natural river channels are virtually always turbulent. Magma flow in dikes and sills, and lava flows, can be turbulent. Atmospheric flows involving eolian transport are turbulent. The complex, convective overturning of fluid in a magma chamber or geyser is a form of turbulence. Thus, a description of the basic qualities of these complex flows is essential for understanding many geological flow phenomena. Turbulent flows generally are associated with large Reynolds numbers. Recall from Chapter 5 that the Reynolds number Re is a measure of the ratio of inertial to viscous forces acting on a fluid element, . . . Re = ρUL/μ . . . . . . (14.1) . . . where the characteristic velocity U and length L are defined in terms of the particular flow system. Thus, turbulence is typically associated, for given fluid density ρ and viscosity μ, with high-speed flows (although we must be careful in applying this generality to thermally driven convective motions; see Chapter 16). A simple, visual illustration of this occurs when smoke rises from a cigar within otherwise calm, surrounding air. The smoke acts as a flow tracer. Smoke molecules at the cigar tip start from rest, since they are initially attached to the cigar. Upward fluid motion, as traced by the smoke, initially is of low speed, and viscous forces have a relatively important influence on its behavior. The flow is laminar; smoke streaklines are smooth and locally parallel. But as the flow accelerates upward, it typically reaches a point where viscous forces are no longer sufficient to damp out destabilizing effects of growing inertial forces, and the flow becomes turbulent, manifest as whirling, swirling fluid motions (see Tolkien [1937]). Throughout this chapter we will consider only incompressible Newtonian fluids. Unfortunately, the complexity of turbulent fluid motions precludes directly using the Navier–Stokes equations to describe them. Instead, we will adopt a procedure whereby the Navier–Stokes equations are recast in terms of temporally averaged or spatially averaged values of velocity and pressure, and fluctuations about these averages.


2012 ◽  
Vol 468-471 ◽  
pp. 2231-2234
Author(s):  
Feng Gao ◽  
Wei Yan Zhong

Numerical simulation of the three-dimensional steady and unsteady turbulent flow in the whole flow field of a multi-blade centrifugal fan is performed. Unstructured grids is used to discrete the computational domain. Pressure boundary conditions are specified to the inlet and the outlet. The SIMPLE algorithm in conjunction with the RNG k-ε turbulent model is used to solve the three-dimensional Navier-Stokes equations. The moving reference frame is adopted to transfer data between the interfaces of the rotating field and the stationary field. Based on the calculation of the inner-flow in the fan, the pressure pulsation of some important monitoring points and the aerodynamic noise distribution, banding together experiment data were farther analyzed The simulation results are of important significance to the optimal design and noise control of the fan.


2010 ◽  
Vol 663 ◽  
pp. 100-119 ◽  
Author(s):  
BINH K. LIEU ◽  
RASHAD MOARREF ◽  
MIHAILO R. JOVANOVIĆ

This study builds on and confirms the theoretical findings of Part 1 of this paper (Moarref & Jovanović, J. Fluid Mech., 2010, doi:10.1017/S0022112010003393). We use direct numerical simulation of the Navier–Stokes equations to assess the efficacy of blowing and suction in the form of streamwise travelling waves for controlling the onset of turbulence in a channel flow. We highlight the effects of the modified base flow on the dynamics of velocity fluctuations and net power balance. Our simulations verify the theoretical predictions of Part 1 that the upstream travelling waves promote turbulence even when the uncontrolled flow stays laminar. On the other hand, the downstream travelling waves with parameters selected in Part 1 are capable of reducing the fluctuations' kinetic energy, thereby maintaining the laminar flow. In flows driven by a fixed pressure gradient, a positive net efficiency as large as 25 % relative to the uncontrolled turbulent flow can be achieved with downstream waves. Furthermore, we show that these waves can also relaminarize fully developed turbulent flows at low Reynolds numbers. We conclude that the theory developed in Part 1 for the linearized flow equations with uncertainty has considerable ability to predict full-scale phenomena.


Author(s):  
L.G. Margolin

Finite-scale equations (FSE) describe the evolution of finite volumes of fluid over time. We discuss the FSE for a one-dimensional compressible fluid, whose every point is governed by the Navier–Stokes equations. The FSE contain new momentum and internal energy transport terms. These are similar to terms added in numerical simulation for high-speed flows (e.g. artificial viscosity) and for turbulent flows (e.g. subgrid scale models). These similarities suggest that the FSE may provide new insight as a basis for computational fluid dynamics. Our analysis of the FS continuity equation leads to a physical interpretation of the new transport terms, and indicates the need to carefully distinguish between volume-averaged and mass-averaged velocities in numerical simulation. We make preliminary connections to the other recent work reformulating Navier–Stokes equations.


Author(s):  
Jia Chen ◽  
Zhaohui Yuan ◽  
Qiang Guo

A spool valve of aerospace hydraulic breaks down because of uneven pressure distribution between sleeve and spool, which is called as hydraulic lock. The rectangular grooves on the spool surface can effectively weaken the lateral force, thereby preventing the hydraulic lock. So the mathematical model of spool valve with rectangular grooves is established according to the Navier-Stokes equations based on the cylindrical coordinate system. To verify the effectivity of the mathematical model, the numerical simulation is compared and used to modified the mathematical model.


Sign in / Sign up

Export Citation Format

Share Document