Full Scale Fatigue Performance of Pre-Strained SCR Girth Welds: Comparison of Different Reeling Frames

Author(s):  
Philippe P. Darcis ◽  
Israel Marines-Garcia ◽  
Eduardo A. Ruiz ◽  
Elsa C. Marques ◽  
Mariano Armengol ◽  
...  

The current work aims to point out the influence of plastic strain history, due to reel-lay installation, on the fatigue resistance of welded SMLS (seamless) steel pipes used for fabrication of Steel Catenary Risers (SCRs) for oil and gas development. A C-Mn steel X65 pipe 10.75″ (273.1 mm) outside diameter (OD) and 25.4 mm wall thickness (WT) was chosen for this program. The Welding Procedure designed for girth welds manufacturing involved the use of Lincoln STT-GMAW™ (Surface Tension Transfer–Gas Metal Arc Welding) process for the root pass and SAW (Submerged Arc Welding) process with twin wire configuration for the fill and cap passes. This welding procedure presents a special post-weld finishing treatment, which consists in flapping the inner and outer weld overfills to produce a flush profile between weld metal and outer/inner pipe surfaces. The experimental approach was focused on quantifying the effect of accumulated plastic deformation using two different reeling frames simulating the same laying vessel: the Technip’s Apache. In this program, two reeling trials were performed at Heriot Watt University, Edinburgh, U.K., and two other trials at Stress Engineering Services, Houston, U.S.A. Then, the strained specimens were full scale fatigue tested at TenarisTamsa R&D facilities. Those results have been compared with fatigue results obtained on unstrained specimens. Post-tests fractographic investigations were systematically performed on all samples to identify the causes for fatigue initiation. The results were statistically analyzed to determine which standard fatigue design curves best represent the measured S-N fatigue endurance. Finally, the results were also compared with the available literature.

Author(s):  
Mohammad S. Davoud

Evaluation of weld temperature field history, strain field history, and residual stress distribution are essential in predicting the performance of weldment during service. During an arc welding process electromagnetic field, radiation, and high temperature gradient away from the centerline of weldment affects measurement of temperature and strain history. The important and critical issues regarding temperature history measurement using thermocouples and strain history measurement using strain gages during the Gas Metal Arc Welding (GMAW) process are explored and overviewed. Guidance is provided to properly select sensors and to reduce the measurement errors in such severe environments during GMAW. Results of experimental temperature and strain history during GMAW are presented.


Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106790
Author(s):  
Rogfel Thompson Martinez ◽  
Guillermo Alvarez Bestard ◽  
Sadek C. Absi Alfaro

Author(s):  
Hanmant Virbhadra Shete ◽  
Sanket Dattatraya Gite

Gas metal arc welding (GMAW) is the leading process in the development of arc welding process for higher productivity and quality. In this study, the effect of process parameters of argon gas welding on the strength of T type welded joint of AISI 310 stainless steel is analyzed. The Taguchi technique is used to develop the experimental matrix and tensile strength of the welded joint is measured using experimental method and finite element method. Optimization of input parameter is performed for the maximum tensile strength of welded joint using ANOVA. The results showed that welding speed is the most significant factor affecting the tensile strength followed by voltage in argon gas metal arc welding (AGMAW) process. Argon gas welding process performance with regard to the tensile strength is optimized at voltage: 18.5 V, wire feed speed: 63 m/min and welding speed: 0.36 m/min.


Sign in / Sign up

Export Citation Format

Share Document