Offshore Reliability Approach for Floating Renewable Energy Devices

Author(s):  
Lars Johanning ◽  
Philipp R. Thies ◽  
David Parish ◽  
George H. Smith

This paper describes the test facilities developed within the Peninsular Research institution for Marine Renewable Energy (PRIMaRE) group and discusses the approach of the group to mitigate risk for marine renewable energy installations. The main consideration is given to the reliability assessment of components within mooring configurations and towards power umbilical for typical renewable energy sites. Load and response data from sea trial will be used to highlight the importance of these research activities, and a Dynamic Marine Component Test rig (DMaC) is introduced that allows four degree of freedom fatigue or destructive tests. Furthermore it is discussed how this facilities could also aid in the reliability assessment of wider offshore applications.

Marine Policy ◽  
2009 ◽  
Vol 33 (4) ◽  
pp. 635-642 ◽  
Author(s):  
Mark A. Shields ◽  
Lora Jane Dillon ◽  
David K. Woolf ◽  
Alex T. Ford

Author(s):  
Fraser J. Ewing ◽  
Philipp R. Thies ◽  
Benson Waldron ◽  
Jonathan Shek ◽  
Michael Wilkinson

Accurately quantifying and assessing the reliability of Offshore Renewable Energy (ORE) devices is critical for the successful commercialisation of the industry. At present, due to the nascent stage of the industry and commercial sensitivities there is very little available reliability field data. This presents an issue: how can the reliability of ORE’s be accurately assessed and predicted with a lack of specific reliability data? ORE devices largely rely on the assessment of surrogate data sources for their reliability assessment. To date there are very few published studies that empirically assess the failure rates of offshore renewable energy devices [1]. The applicability of surrogate data sources to the ORE environment is critical and needs to be more thoroughly evaluated for a robust ORE device reliability assessment. This paper tests two commonly held assumptions used in the reliability assessment of ORE devices. Firstly, the constant failure rate assumption that underpins ORE component failure rate estimations is addressed. Secondly, a model that is often used to assess the reliability of onshore wind components, the Non-Homogeneous Poisson Power Law Process (PLP) model is empirically assessed and trend tested to determine its suitability for use in ORE reliability prediction. This paper suggests that pitch systems, generators and frequency converters cannot be considered to have constant failure rates when analysed via nonrepairable methods. Thus, when performing a reliability assessment of an ORE device using non-repairable surrogate data it cannot always be assumed that these components will exhibit random failures. Secondly, this paper suggests when using repairable system methods, the PLP model is not always accurate at describing the failure behaviour of onshore wind pitch systems, generators and frequency converters whether they are assessed as groups of turbines or individually. Thus, when performing a reliability assessment of an ORE device using repairable surrogate data both model choice and assumptions should be carefully considered.


Author(s):  
Philipp R. Thies ◽  
Lars Johanning ◽  
Tessa Gordelier ◽  
Andrew Vickers ◽  
Sam Weller

The reliability and integrity of components used in the marine offshore environment is paramount for the safety and viability of offshore installations. The engineering challenge is to design components that are robust enough to meet reliability targets whilst lean enough to minimise cost. This is particularly the case for offshore marine renewable installations which operate in the same, possibly harsher, environment as offshore oil and gas installations, and are subjected to highly cyclic and dynamic wave, wind and operational load conditions. The cost of electricity produced has to compete with other means of electricity generation and does thus not offer the same profit margins available as oil and gas commodities. As a result, components for marine renewable installations have to meet the target reliability, without the application of costly safety factors to account for load and environmental uncertainties. Industries with similar design tasks such as the aviation or automotive industry have successfully used a service simulation test approach to develop robust yet lean designs. This paper builds on an approach to establish and validate the reliability of floating renewable energy devices in which dedicated component testing using the purpose built Dynamic Marine Component test rig (DMaC) plays a pivotal role to assess, validate and predict the reliability of components in the marine environment. This paper presents a test rig for both static and fatigue tests of marine components such as mooring lines and mooring shackles under simulated or measured load conditions and provides two case studies from recently conducted mooring component tests. This includes an investigation into the load behaviour of synthetic mooring ropes and the ageing of mooring shackles.


2014 ◽  
Vol 51 (2) ◽  
pp. 330-338 ◽  
Author(s):  
Thomas P. Adams ◽  
Raeanne G. Miller ◽  
Dmitry Aleynik ◽  
Michael T. Burrows

Author(s):  
Daisuke Kitazawa ◽  
Yoichi Mizukami

Before the installation of marine renewable energy devices, fish species and abundance should be examined for selecting the proper site where the effects of the devices on the environment and fish will be as small as possible. Fish species and abundance can be examined in a variety of methods such as a fish finder using an acoustic wave and fishing gears such as a gill net. However, the fish finder cannot specify the species of fish that is sometimes estimated from the experience of fishermen or scientific researchers. Some amounts of fish must be removed from the target sea area in case of using the fishing gear, while the species of fish can be specified. In the present study, an underwater optical video camera is combined with the fish finder using an acoustic wave to specify the species of fish. A circular fish-eye digital video camera is inserted into a waterproof container. A part of the container is made of glass in a dome shape for the circular fish-eye lens. The container is attached to polyethylene ropes and is towed by a fishing vessel. First, the hydrodynamic characteristics of the container was examined by a towing test with the three kinds of towing speed in a water tank. Then the container was towed in the real sea, which is the demonstration site of offshore wind and wave energy developments off Kamaishi of Iwate Prefecture. The depth of the video camera with the container was not constant since the moving speed of the fishing vessel was slow and fluctuating. The image of video camera could be captured successfully together with that of the acoustic video camera, while fish could not be found in both the optical and acoustic measurements in the present investigation. The investigation will be continued, and the effects of transparency of water should be discussed as future works. Also the actual or model fish should be captured by the underwater video camera to evaluate if it can specify the species of fish.


2016 ◽  
Vol 139 (4) ◽  
pp. 2174-2174
Author(s):  
Shaun Fraser ◽  
Benjamin Williamson ◽  
Beth E. Scott ◽  
Vladimir Nikora

PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0188780 ◽  
Author(s):  
Pál Schmitt ◽  
Ross Culloch ◽  
Lilian Lieber ◽  
Sverker Molander ◽  
Linus Hammar ◽  
...  

2016 ◽  
Author(s):  
Jarlath McEntee ◽  
Brian Polagye ◽  
Brian Fabien ◽  
Jim Thomson ◽  
Levi Kilcher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document