Comparison of Two Base-Potentials for a Slender-Body Method

Author(s):  
Mahmoud Alidadi ◽  
Sander Calisal

The effects of two base-potentials on the accuracy of a slender-body method are studied in this paper. In the formulation for this method which is developed for the slender ships, the velocity potential is decomposed into a base-potential and a perturbation potential. Then using an order of magnitude analysis, the three-dimensional flow problem is simplified into a series of two-dimensional problems for the perturbation potential. These two-dimensional problems are solved with the linearized free surface boundary conditions, using a mixed Eulerian-Lagrangian method. Finally for the two base-potentials, the numerical wave elevation along a Wigleyull are compared with the experimental results.

2010 ◽  
Vol 54 (02) ◽  
pp. 79-94 ◽  
Author(s):  
Xinshu Zhang ◽  
Piotr Bandyk ◽  
Robert F. Beck

Large-amplitude, time-domain, wave-body interactions are studied in this paper for problems with forward speed. Both two-dimensional strip theory and three-dimensional computation methods are shown and compared by a number of numerical simulations. In the present approach, an exact body boundary condition and linearized free surface boundary conditions are used. By distributing desingularized sources above the calm water surface and using constant-strength flat panels on the exact body surface, the boundary integral equations are solved numerically at each time step. The strip theory method implements Radial Basis Functions to approximate the longitudinal derivatives of the velocity potential on the body. Once the fluid velocities on the free surface are computed, the free surface elevation and potential are updated by integrating the free surface boundary conditions. After each time step, the body surface and free surface are regrided due to the instantaneous changing wetted body geometry. Extensive results are presented to validate the efficiency of the present methods. These results include the added mass and damping computations for a Wigley III hull and an S-175 hull with forward speed using both two-dimensional and three-dimensional approaches. Exciting forces acting on a Wigley III hull due to regular head seas are obtained and compared using both the fully three-dimensional method and the two-dimensional strip theory. All the computational results are compared with experiments or other numerical solutions.


1963 ◽  
Vol 16 (4) ◽  
pp. 620-632 ◽  
Author(s):  
D. J. Maull ◽  
L. F. East

The flow inside rectangular and other cavities in a wall has been investigated at low subsonic velocities using oil flow and surface static-pressure distributions. Evidence has been found of regular three-dimensional flows in cavities with large span-to-chord ratios which would normally be considered to have two-dimensional flow near their centre-lines. The dependence of the steadiness of the flow upon the cavity's span as well as its chord and depth has also been observed.


2017 ◽  
Vol 825 ◽  
pp. 631-650 ◽  
Author(s):  
Francesco Romanò ◽  
Arash Hajisharifi ◽  
Hendrik C. Kuhlmann

The topology of the incompressible steady three-dimensional flow in a partially filled cylindrical rotating drum, infinitely extended along its axis, is investigated numerically for a ratio of pool depth to radius of 0.2. In the limit of vanishing Froude and capillary numbers, the liquid–gas interface remains flat and the two-dimensional flow becomes unstable to steady three-dimensional convection cells. The Lagrangian transport in the cellular flow is organised by periodic spiralling-in and spiralling-out saddle foci, and by saddle limit cycles. Chaotic advection is caused by a breakup of a degenerate heteroclinic connection between the two saddle foci when the flow becomes three-dimensional. On increasing the Reynolds number, chaotic streamlines invade the cells from the cell boundary and from the interior along the broken heteroclinic connection. This trend is made evident by computing the Kolmogorov–Arnold–Moser tori for five supercritical Reynolds numbers.


1994 ◽  
Vol 61 (2) ◽  
pp. 264-269 ◽  
Author(s):  
A. Nagarajan ◽  
E. Lutz ◽  
S. Mukherjee

This paper presents a novel application of the boundary element method to solve problems in linear elasticity. The new method is called the Boundary Contour Method. This approach requires no numerical integration at all for two-dimensional problems and numerical evaluation of line integrals only for three-dimensional problems; even for curved line or surface boundary elements of arbitrary shape! Numerical results are presented for some two-dimensional problems.


2020 ◽  
Vol 407 ◽  
pp. 109239
Author(s):  
José Miguel Pérez ◽  
Soledad Le Clainche ◽  
José Manuel Vega

1999 ◽  
Vol 396 ◽  
pp. 37-71 ◽  
Author(s):  
LEONID BREVDO ◽  
PATRICE LAURE ◽  
FREDERIC DIAS ◽  
THOMAS J. BRIDGES

The film flow down an inclined plane has several features that make it an interesting prototype for studying transition in a shear flow: the basic parallel state is an exact explicit solution of the Navier–Stokes equations; the experimentally observed transition of this flow shows many properties in common with boundary-layer transition; and it has a free surface, leading to more than one class of modes. In this paper, unstable wavepackets – associated with the full Navier–Stokes equations with viscous free-surface boundary conditions – are analysed by using the formalism of absolute and convective instabilities based on the exact Briggs collision criterion for multiple k-roots of D(k, ω) = 0; where k is a wavenumber, ω is a frequency and D(k, ω) is the dispersion relation function.The main results of this paper are threefold. First, we work with the full Navier–Stokes equations with viscous free-surface boundary conditions, rather than a model partial differential equation, and, guided by experiments, explore a large region of the parameter space to see if absolute instability – as predicted by some model equations – is possible. Secondly, our numerical results find only convective instability, in complete agreement with experiments. Thirdly, we find a curious saddle-point bifurcation which affects dramatically the interpretation of the convective instability. This is the first finding of this type of bifurcation in a fluids problem and it may have implications for the analysis of wavepackets in other flows, in particular for three-dimensional instabilities. The numerical results of the wavepacket analysis compare well with the available experimental data, confirming the importance of convective instability for this problem.The numerical results on the position of a dominant saddle point obtained by using the exact collision criterion are also compared to the results based on a steepest-descent method coupled with a continuation procedure for tracking convective instability that until now was considered as reliable. While for two-dimensional instabilities a numerical implementation of the collision criterion is readily available, the only existing numerical procedure for studying three-dimensional wavepackets is based on the tracking technique. For the present flow, the comparison shows a failure of the tracking treatment to recover a subinterval of the interval of unstable ray velocities V whose length constitutes 29% of the length of the entire unstable interval of V. The failure occurs due to a bifurcation of the saddle point, where V is a bifurcation parameter. We argue that this bifurcation of unstable ray velocities should be observable in experiments because of the abrupt increase by a factor of about 5.3 of the wavelength across the wavepacket associated with the appearance of the bifurcating branch. Further implications for experiments including the effect on spatial amplification rate are also discussed.


1991 ◽  
Vol 113 (3) ◽  
pp. 627-634 ◽  
Author(s):  
K. Vafai ◽  
J. Ettefagh

The present work centers around a numerical three-dimensional transient investigation of the effects of axial convection on flow and temperature fields inside an open-ended annulus. The transient behavior of the flow field through the formation of a three-dimensional flow field and its subsequent effect on the temperature distribution at different axial locations within the annulus were analyzed by both finite difference and finite element methods. The results show that the axial convection has a distinctly different influence on the temperature and velocity fields. It is found that in the midportion of the annulus a two-dimensional assumption with respect to the temperature distribution can lead to satisfactory results for Ra<10,000. However, such an assumption is improper with respect to the flow field. Furthermore, it is shown that generally the errors for a two-dimensional assumption in the midportion of the annulus are less at earlier times (t<50Δt) during the transient development of the flow and temperature fields.


Author(s):  
Xinshu Zhang ◽  
Robert F. Beck

Three-dimensional, time-domain, wave-body interactions are studied in this paper for cases with and without forward speed. In the present approach, an exact body boundary condition and linearized free surface boundary conditions are used. By distributing desingularized sources above the calm water surface and using constant-strength panels on the exact submerged body surface, the boundary integral equations are solved numerically at each time step. Once the fluid velocities on the free surface are computed, the free surface elevation and potential are updated by integrating the free surface boundary conditions. After each time step, the body surface and free surface are regrided due to the instantaneous changing submerged body geometry. The desingularized method applied on the free surface produces non-singular kernels in the integral equations by moving the fundamental singularities a small distance outside of the fluid domain. Constant strength panels are used for bodies with any arbitrary shape. Extensive results are presented to validate the efficiency of the present method. These results include the added mass and damping computations for a hemisphere. The calm water wave resistance for a submerged spheroid and a Wigley hull are also presented. All the computations with forward speed are started from rest and proceed until a steady state is reached. Finally, the time-domain forced motion results for a modified Wigley hull with forward speed are shown and compared with the experiments for both linear computations and body-exact computations.


1968 ◽  
Vol 72 (686) ◽  
pp. 171-177 ◽  
Author(s):  
John H. Neilson ◽  
Alastair Gilchrist ◽  
Chee K. Lee

This work deals with theoretical aspects of thrust vector control in rocket nozzles by the injection of secondary gas into the supersonic region of the nozzle. The work is concerned mainly with two-dimensional flow, though some aspects of three-dimensional flow in axisymmetric nozzles are considered. The subject matter is divided into three parts. In Part I, the side force produced when a physical wedge is placed into the exit of a two-dimensional nozzle is considered. In Parts 2 and 3, the physical wedge is replaced by a wedge-shaped “dead water” region produced by the separation of the boundary layer upstream of a secondary injection port. The modifications which then have to be made to the theoretical relationships, given in Part 1, are enumerated. Theoretical relationships for side force, thrust augmentation and magnification parameter for two- and three-dimensional flow are given for secondary injection normal to the main nozzle axis. In addition, the advantages to be gained by secondary injection in an upstream direction are clearly illustrated. The theoretical results are compared with experimental work and a comparison is made with the theories of other workers.


Sign in / Sign up

Export Citation Format

Share Document