Influence of Striker Shape on the Crack Initiation and Propagation on Laterally Impacted Thin Aluminium Plates

Author(s):  
Bin Liu ◽  
Richard Villavicencio ◽  
C. Guedes Soares

Experimental and numerical results of drop weight impact tests are presented, examining the plastic response and the crack initiation and propagation of small-scale clamped rectangular aluminium plates laterally impacted by different indenter shapes. The experiments are conducted using a fully instrumented impact testing machine. The shape of the deformation of the specimens and the process of initiation and propagation of the material fracture is presented. The obtained force-displacement responses show a good agreement with the simulations performed by the LS-DYNA finite element solver. The strain hardening of the material is defined using experimental data of quasi-static tensile tests and the critical failure strain is evaluated measuring the thickness and the width at fracture of the tensile test pieces. The results show that the absorbed energy to perforate the specimens is highly sensitive to the shape of the striker. Thus, the crack propagation for each striker type is analysed in terms of the force-displacement response. The failure modes are described by the matrix of the infinitesimal strain tensors and the shape of the deformation of the failing elements.

Author(s):  
B. Liu ◽  
R. Villavicencio ◽  
C. Guedes Soares

Experimental and numerical results of drop weight impact tests are presented, examining the plastic response and the crack initiation and propagation of small-scale clamped rectangular aluminum plates laterally impacted by different indenter shapes. The experiments are conducted using a fully instrumented impact testing machine. The shape of the deformation of the specimens and the process of initiation and propagation of the material fracture are presented. The obtained force–displacement responses show a good agreement with the simulations performed by the ls-dyna finite element solver. The strain hardening of the material is defined using experimental data of quasi-static tensile tests and the critical failure strain is evaluated by measuring the thickness and the width at fracture of the tensile test pieces. The results show that the absorbed energy to perforate the specimens is highly sensitive to the shape of the striker. Thus, the crack propagation for each striker type is analyzed in terms of the force–displacement response. The failure modes are described by the matrix of the infinitesimal strain tensors and the shape of the deformation of the failing elements.


Author(s):  
Zeeshan Anjum ◽  
Masood Shah ◽  
Hassan Elahi ◽  
Mushtaq Khan ◽  
Mohammad Mujahid ◽  
...  

The interaction of mechanical components experiencing relative movements and cyclic loads in a corrosive environment is known as fretting corrosion or tribocorrosion. In the current work, the mechanism of crack initiation and propagation in dovetail slots of Ti6Al4V samples (in contact with carbide rods) under fretting corrosion conditions was investigated. A newly developed test rig installed on a universal testing machine was used to conduct tests at 20 Hz frequency under 5 and 7.5 kN fretting loads. Tests were conducted at room temperature in 3.5% NaCl and phosphate-buffered saline solutions. Crack propagation in all samples was examined by a metallurgical microscope, and the detailed analysis of fractured samples was carried out by a scanning electron microscope. In comparison to dry conditions, early crack initiation and faster crack propagation were observed in salt and physiological solution environments. Colored spots and large amounts of chlorine, sodium, and oxygen were found around cracks, and plastically deformed regions in the 3.5% NaCl environment provided the evidence of a corrosive attack. Large amounts of oxygen, phosphorous, chlorine, potassium, and sodium were detected in the phosphate-buffered saline environment.


2011 ◽  
Vol 418-420 ◽  
pp. 1613-1617 ◽  
Author(s):  
Justyna Rozwadowska ◽  
Katsuyuki Kida ◽  
Edson Costa Santos ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
...  

An innovative type of one-point rolling contact fatigue (RCF) machine was developed in order to investigate crack initiation and propagation in metals. The microstructural changes and propagation of subsurface cracks during rolling contact in specimens tested by using the new device were studied by laser confocal microscope and X-ray diffraction. It was shown that this new method presents several important advantages compared to the conventional thrust type RCF machines.


2007 ◽  
Vol 345-346 ◽  
pp. 1625-1628 ◽  
Author(s):  
Wei Dong Song ◽  
Hai Yan Liu ◽  
Jian Guo Ning

The tensile tests and the three-point bending tests have been conducted to investigate the crack initiation and propagation and the fracture behavior of 91W-6.3Ni-2.7Fe with three kinds grain sizes of 1~3μm, 10~15μm and 30~40μm. SEM was introduced to analyze the grain sizes, the micro-defects, the deformations and the fracture behaviors of tungsten alloys. The test results show that under the same loading conditions, the crack initiation and the crack propagation are not only related to grain size, but also related to the contiguity of tungsten grains and the interface between the tungsten grains and the matrix.


Author(s):  
Ming Li ◽  
Zhiming Shi ◽  
Xiufeng Wu ◽  
Huhe Wang ◽  
Yubao Liu

The microstructure of Al-5Fe-1.5Er alloy was characterized and analyzed by using XRD, SEM, TEM and EDS. The effect of microstructure on the behavior of crack initiation and propagation was investigated by in situ tensile testing. Results show that the microstructure consists of α-Al matrix, Al3Fe, Al4Er, eutectic phase Al3Fe + Al4Er, while the 1.5 wt.% Er was added in Al-5Fe alloy. The twin structure of the Al3Fe phase was observed, and the twin plane is {001}. Moreover, a continuous concave and convex interface structure of the Al4Er has been found. Al3Fe is in the form of a sheet with a clear gap inside.In situ tensile tests of the alloy at room temperature show that the crack initiation occured mainly in the Al3Fe phase, and that the crack propagation modes include intergranular and transgranular expansion. Crack transgranular expansion is due to the strong binding ability between Al4Er phases and surrounding organization, and the continuous concave and convex interface structure of the Al4Er provides a significant meshing effect on the matrix and eutectic structure.


2018 ◽  
Vol 18 (03) ◽  
pp. 1850031
Author(s):  
DENIZ KARADUMAN ◽  
DURMUŞ ALI BİRCAN ◽  
AHMET ÇETİN

Acoustic emission (AE) is a nondestructive testing (NDT) technique used for detecting damages, cracks, and leaks in different structures such as metals, composites, wood, fiberglass, ceramics, plastics, etc. In recent years, AE has gained popularity within the field of biomedical applications. The structure of bone is similar to composite materials, therefore, it is advantageous to use NDT technique. Thus, it can be used for monitoring the fracture behavior, crack initiation/propagation, and fatigue detection in bones. The goal of this study was to determine the usefulness of AE techniques in fracture detection phase of bones and to develop an NDT methodology for the monitoring of crack initiation and propagation in bones. This study describes AE activity during fracture of bone tissue under tensile loads. The experiments were carried out in vitro techniques using intact and fracture-simulated bovine tibias. The specimens were loaded to failure in tension using a mechanical testing machine. During the mechanical tests, AE signals were measured and recorded by using AE system processor equipped with two wideband piezoelectric sensors fixed to the surfaces of both ends of the test specimens. By superposing the load–time curve and the cumulative AE event–time curve, AE activities of crack initiation and propagation were identified. In all experiments, the cumulative AE number for each period of time rose up exponentially with the incremental tensile load. Load for AE initiation demonstrated a convincing linear interaction with AE event generation.


2012 ◽  
Vol 152-154 ◽  
pp. 1233-1238 ◽  
Author(s):  
Justyna Rozwadowska ◽  
Katsuyuki Kida ◽  
Edson Costa Santos ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
...  

An innovative type of one-point rolling contact fatigue (RCF) machine was developed in order to investigate crack initiation and propagation in metals. The microstructural changes and propagation of subsurface cracks during rolling contact in specimens tested by using the new device were studied by laser confocal microscope and X-ray diffraction. It was shown that this new method presents several important advantages compared to the conventional thrust type RCF machines.


Sign in / Sign up

Export Citation Format

Share Document