Wave Modelling for Potential Wave Energy Sites Around the Outer Hebrides

Author(s):  
Charles E. Greenwood ◽  
Vengatesan Venugopal ◽  
David Christie ◽  
James Morrison ◽  
Arne Vögler

This paper presents the results of a numerical wave modelling study carried out to assess the near shore wave energy resource around potential wave energy sites at the Outer Hebrides in the United Kingdom. This study uses Danish Hydraulic Institute’s MIKE 21 Spectral Wave model suite. Input boundary conditions are obtained from a Datawell directional wave buoy located approximately 16 km off the coast of Lewis in 60 metre depth. Additional data collected from a submerged Acoustic Wave and Current profiler (AWAC) located at 13 metre depth offshore at one of the wave energy development sites was used to calibrate and validate the wave model for separate time periods. The calibration process allows the manipulation of white capping, bottom friction and wave breaking parameters to alter the energy dissipation across the model domain. The altered parameters gave a significantly better agreement between modelled and measured results than the model defaults. While the average wave conditions provided a relatively straightforward calibration process the more extreme storm events significantly under predicted the wave height. After several trials in altering model coefficients a good agreement was reached between the model results and the AWAC data. These new sets of calibration parameters enable the simulation of wave heights within 13% for the AWAC data and marginally more for wave periods for the first 6 months of 2012.

Author(s):  
George Lavidas ◽  
Vengatesan Venugopal ◽  
Daniel Friedrich ◽  
Atul Argawal

Wave energy sites around Scotland, are considered one of the most energetic waters, as they are exposed to the Atlantic Ocean. The amount of energy reaching the shoreline provides an opportunity for wave energy deployments. Currently, considerations on wave devices expect them to be installed at nearshore locations. That means that the potential wave resource has to be investigated, since deep to shallow water interactions alter the shape of propagated waves. Resource assessment for these regions is essential in order to estimate the available and extractable energy resource. Although several numerical models exist for wave modelling, not all are suitable for nearshore applications. For the present work, the nearshore wave model SWAN has been used to simulate waves for the Hebridean region. The set-up, calibration and validation of the model are discussed. The resulting wave conditions are compared with buoy measurements. Results indicate that the modelling technique performed well.


2020 ◽  
Vol 8 (3) ◽  
pp. 199 ◽  
Author(s):  
Ximun Lastiri ◽  
Stéphane Abadie ◽  
Philippe Maron ◽  
Matthias Delpey ◽  
Pedro Liria ◽  
...  

Wave resource assessment is the first step toward the installation of a wave energy converter (WEC). To support initiatives for wave energy development in the southwest of France, a coastal wave database is built from a 44-year hindcast simulation with the spectral wave model SWAN (Simulating WAve Nearshore) run on a high-resolution unstructured grid. The simulation includes shallow-water processes such as refraction, shoaling, and breaking. The model is validated against a five-year coastal wave buoy recording. The study shows that most of the resource is provided by sea states with wave heights ranging from 2 to 5 m, with wave periods from 10 and 15 s, and coming from a very narrow angular sector. The long hindcast duration and the refined unstructured grid used for the simulation allow assessment of the spatiotemporal distribution of wave energy across the coastal area. On the one hand, large longshore variations of the resource caused by steep bathymetric gradients such as the Capbreton submarine canyon are underlined. On the other hand, the study highlights that no specific long-term trend can be extracted regarding the coastal wave energy resource evolution. The provided downscaled local wave resource information may be used to optimize the location and design of a future WEC that could be deployed in the region.


Author(s):  
Sarah Gallagher ◽  
Roxana Tiron ◽  
Frederic Dias

The western coast of Ireland possesses one of the highest wave energy resources in the world and consequently is a promising location for the future deployment of Wave Energy Converters (WECs). Most wave climate studies for this region have focused primarily on the offshore area since it enjoys higher energy densities. However, recent studies have shown that nearshore locations offer a similar potential for the exploitation of wave energy as offshore sites [13]. Furthermore, the proximity of WEC devices to the shore will likely reduce losses in power transport, and facilitate access for maintenance activities. In this context, we analyse the wave climate over a ten year period for several nearshore sites off the Irish West Coast. The wave climate is estimated using a spectral wave model, WaveWatch III, forced with wind and spectral wave data from the ECMWF (European Centre for Medium Range Weather Forecast) operational archive. The wave model is validated with wave buoy data from intermediate to shallow depths (< 60 m). Our focus is on two aspects of the wave climate resource assessment. Firstly, we characterise the directionality of the wave energy resource (mean direction, directional spread) which affects the site selection, design and performance of nearshore WECs. Secondly, we discuss the climate data from the perspective of accessibility for maintenance. When selecting sites for the deployment of WECs, a balance needs to be found between two opposing criteria: the existence of sufficiently long, continuous time intervals of calm sea states (weather windows) which are necessary for maintenance activities to take place, and a high, consistent level of wave energy density, essential for economically viable wave energy extraction.


2016 ◽  
Vol 11 (5) ◽  
pp. 964-972 ◽  
Author(s):  
Fuchun Lai ◽  
◽  
Luying Liu ◽  
Haijiang Liu ◽  
◽  
...  

To study wave effects on storm surge, a depth-averaged 2D numerical model based on the Delft3D-FLOW model was utilized to simulate near-shore hydrodynamic responses to Typhoon Khanun. The Delft3D-WAVE model is coupled dynamically with the FLOW model and the enhanced vertical mixing, mass flux and wave set-up were considered as wave-current interaction in the coupled model. After verifying storm surge wind and pressure formulae of storm surge and optimizing calibration parameters, three numerical tests with different control variables were conducted. Model tests show that wave effects must be considered in numerical simulation. Simulating the flow-wave coupled model showed that wave-induced surge height could be as large as 0.4 m in near-shore areas for Typhoon Khanun. Comparing to its contribution to the peak surge height, wave-induced surge plays a more significant role to total surge height with respect to the time-averaged surge height in storm events. Wave-induced surge (wave setup) is in advance of typhoon propagation and becomes significant even before the typhoon landfall. Model tests demonstrate that the wave effects are driven predominantly by the storm wave, while the boundary wave contribution is rather limited.


2014 ◽  
Vol 71 ◽  
pp. 665-678 ◽  
Author(s):  
Bryson R.D. Robertson ◽  
Clayton E. Hiles ◽  
Bradley J. Buckham

Author(s):  
Arne Vögler ◽  
Vengatesan Venugopal

The Outer Hebrides of Scotland were identified as an area with a high wave power resource of 42.4kW/m. The Outer Hebrides of Scotland are currently targeted by a range of developers for demonstration and commercial developments of wave energy converters and current planning efforts are based on initial deployments by 2014. Technology providers with well advanced plans to develop the Hebridean wave resource include Aquamarine Power (Oyster) [1], Pelamis (P2) [2] and Voith Wavegen (OWC) [3]; all of these companies are partners in the Hebridean Marine Energy Futures project [4] to help move the industry into the commercialisation stage. As part of the Hebridean Marine Energy Futures project, a three year programme aimed at developing a high resolution wave energy resource map to support the site selection process of marine energy developers, a network of three wave measuring buoys was deployed 15km offshore in a depth of 60m and at distances of 11km between buoys. Measured wind and wave data from this buoy network for autumn 2011 are analysed and presented in this paper along with estimated wave power for the same duration.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Chong Wei Zheng ◽  
Chong Yin Li ◽  
Xuan Chen ◽  
Jing Pan

The short-term forecasting of wave energy is important to provide guidance for the electric power operation and power transmission system and to enhance the efficiency of energy capture and conversion. This study produced a numerical forecasting experiment of the China Sea wave energy using WAVEWATCH-III (WW3, the latest version 4.18) wave model driven by T213 (WW3-T213) and T639 (WW3-T639) wind data separately. Then the WW3-T213 and WW3-T639 were verified and compared to build a short-term wave energy forecasting structure suited for the China Sea. Considering the value of wave power density (WPD), “wave energy rose,” daily and weekly total storage and effective storage of wave energy, this study also designed a series of short-term wave energy forecasting productions. Results show that both the WW3-T213 and WW3-T639 exhibit a good skill on the numerical forecasting of the China Sea WPD, while the result of WW3-T639 is much better. Judging from WPD and daily and weekly total storage and effective storage of wave energy, great wave energy caused by cold airs was found. As there are relatively frequent cold airs in winter, early spring, and later autumn in the China Sea and the surrounding waters, abundant wave energy ensues.


1996 ◽  
Vol 118 (4) ◽  
pp. 307-309 ◽  
Author(s):  
M. T. Pontes ◽  
G. A. Athanassoulis ◽  
S. Barstow ◽  
L. Cavaleri ◽  
B. Holmes ◽  
...  

An atlas of the European offshore wave energy resource, being developed within the scope of a European R&D program, includes the characterization of the offshore resource for the Atlantic and Mediterranean coasts of Europe in addition to providing wave-energy and wave-climate statistics that are of interest to other users of the ocean. The wave data used for compiling the Atlas come from the numerical wind-wave model WAM, implemented in the routine operation of the European Centre for Medium Range Weather Forecasts (ECMWF), in addition to directional wave measurements from the Norwegian offshore waters.


2017 ◽  
Vol 114 ◽  
pp. 132-144 ◽  
Author(s):  
Zhaoqing Yang ◽  
Vincent S. Neary ◽  
Taiping Wang ◽  
Budi Gunawan ◽  
Annie R. Dallman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document