Numerical Simulation of an Oscillating Cylinder at High Reynolds Number

Author(s):  
Simone Mandelli ◽  
Sara Muggiasca ◽  
Stefano Malavasi

In this work a numerical investigation of the main flow field characteristics around a free oscillating rigid circular cylinder immersed in a turbulent flow is proposed (Re ≈ 5 · 104). The cylinder is characterized by high value of mass ratio and mass damping (m* = 145; ξ = 0.6 ÷ 1.14 · 10−3; m*ξ = 0.1 ÷ 0.25). The numerical results are compared with experimental data obtained in the wind tunnel under very similar fluid dynamic conditions. There are few works in literature that consider both numerical and experimental results under these conditions. This is probably due to the experimental facilities limitations and the computational difficulties correlated to modeling the flow at high Reynolds number. A numerical URANS model was developed through a CFD commercial code using a k–ω SST turbulence model in a 3D domain with the aim of matching the experimental results in the last years in the Politecnico di Milano Wind Tunnel on a suspended oscillating cylinder. The numerical setup is characterized by the use of the DFBI-Morphing (Dynamic Fluid Body Interaction) model that allows reproducing the body motion in response to fluid forces treating the cylinder as a mass-damping-spring system by introducing spring and damping forces acting on it. A preliminary check of this numerical setup was provided by a benchmark case involving a simple case of fixed cylinder at the same Reynolds number, where the movements of the cylinder were disabled. The numerical results of this case have been compared with experimental and numerical results reported in literature in terms of Drag and Lift coefficients and Strouhal number at high Reynolds numbers (Re ≈ 5 · 104). After that benchmark, the full setup has been checked by considering specific fluid dynamic conditions out of the lock in region in which the oscillations of the cylinder are negligible. Finally two points of the cylinder steady state response curve in the lock in region were investigated. The numerical model gave good results in terms of amplitude response of the cylinder and aerodynamic forces in agreement with experimental results. The analysis of the numerical reconstruction of the flow field evolution are therefore considered to have more information on the vortex shedding mode especially in the transition region between 2S and 2P mode.

Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 28
Author(s):  
John Hart ◽  
Jonathan Potts

This paper presents the first scale resolving computational fluid dynamic (CFD) investigation of a geometrically realistic feather shuttlecock with rotation at a high Reynolds number. Rotation was found to reduce the drag coefficient of the shuttlecock. However, the drag coefficient is shown to be independent of the Reynolds number for both rotating and statically fixed shuttlecocks. Particular attention is given to the influence of rotation on the development of flow structures. Rotation is shown to have a clear influence on the formation of flow structures particularly from the feather vanes, and aft of the shuttlecock base. This further raises concerns regarding wind tunnel studies that use traditional experimental sting mounts; typically inserted into this aft region, they have potential to compromise both flow structure and resultant drag forces. As CFD does not necessitate use of a sting with proper application, it has great potential for a detailed study and analysis of shuttlecocks.


Author(s):  
Norio Kondo

This paper presents numerical results for flow-induced oscillations of an elastically supported circular cylinder, which is immersed in a high Reynolds number flow. The flow-induced oscillations of the circular cylinder at subcritical Reynolds numbers have been investigated by many researchers, and the interested phenomena with respect to the oscillations have been found in a wide range of the Scruton number. For the flow-induced oscillation of the circular cylinder with high mass ratio, it is well-known that there is the peak value of amplitudes at near the critical reduced velocity. Therefore, we computer flow-induced oscillations of a circular cylinder with a mass ratio of 8, which is placed in a high Reynolds number flow, by three-dimensional simulation, and the numerical results are compared with the results of flow-induced oscillations of the circular cylinder immersed in a subcritical Reynolds number flow.


Author(s):  
Noriyuki Furuichi ◽  
Kar-Hooi Cheong ◽  
Yoshiya Terao ◽  
Shinichi Nakao ◽  
Keiji Fujita ◽  
...  

Discharge coefficients for three flow nozzles based on ASME PTC 6 are measured under many flow conditions at AIST, NMIJ and PTB. The uncertainty of the measurements is from 0.04% to 0.1% and the Reynolds number range is from 1.3×105 to 1.4×107. The discharge coefficients obtained by these experiments is not exactly consistent to one given by PTC 6 for all examined Reynolds number range. The discharge coefficient is influenced by the size of tap diameter even if at the lower Reynolds number region. Experimental results for the tap of 5 mm and 6 mm diameter do not satisfy the requirements based on the validation procedures and the criteria given by PTC 6. The limit of the size of tap diameter determined in PTC 6 is inconsistent with the validation check procedures of the calibration result. An enhanced methodology including the term of the tap diameter is recommended. Otherwise, it is recommended that the calibration test should be performed at as high Reynolds number as possible and the size of tap diameter is desirable to be as small as possible to obtain the discharge coefficient with high accuracy.


Measurement ◽  
2013 ◽  
Vol 46 (8) ◽  
pp. 2457-2466 ◽  
Author(s):  
Marija Samardžić ◽  
Jovan Isaković ◽  
Zoran Anastasijević ◽  
Dragan Marinkovski

Sign in / Sign up

Export Citation Format

Share Document