Fluid Dynamical and Modeling Issues of Chemical Flooding for Enhanced Oil Recovery

Author(s):  
Prabir Daripa

This paper evaluates the relevance of Hele-Shaw (HS) model based linear stability results to fully developed flows in enhanced oil recovery (EOR). In a recent exhaustive study [Transport in Porous Media, 93, 675–703 (2012)] of the linear stability characteristics of unstable immiscible three-layer “Hele-Shaw” flows involving regions of varying viscosity, an optimal injection policy corresponding to the smallest value of the highest rate of growth of instabilities was identified among several injection policies. Relevance of this HS model based result to EOR is established by performing direct numerical simulations of fully developed tertiary displacement in porous media. Results of direct numerical simulation are succinctly summarized including characterization of the optimal flooding scheme that leads to maximum oil recovery. These results have been compared with the HS model based linear stability results. The scope for potential application of the HS model based results to the development of fast methods for optimization of various chemical flooding schemes is discussed. Numerical experiments with more complex flooding schemes in both homogeneous and heterogeneous reservoir are also performed and results analyzed to test the universality of the generic optimal viscous families in a broader setting.

REAKTOR ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 65-73
Author(s):  
Agam Duma Kalista Wibowo ◽  
Pina Tiani ◽  
Lisa Aditya ◽  
Aniek Sri Handayani ◽  
Marcelinus Christwardana

Surfactants for enhanced oil recovery are generally made from non-renewable petroleum sulfonates and their prices are relatively expensive, so it is necessary to synthesis the bio-based surfactants that are renewable and ecofriendly. The surfactant solution can reduce the interfacial tension (IFT) between oil and water while vinyl acetate monomer has an ability to increase the viscosity as a mobility control. Therefore, polymeric surfactant has both combination properties in reducing the oil/water IFT and increasing the viscosity of the aqueous solution simultaneously. Based on the study, the Critical Micelle Concentration (CMC) of Polymeric Surfactant was at 0.5% concentration with an IFT of 7.72x10-2 mN/m. The best mole ratio of methyl ester sulfonate to vinyl acetate for polymeric surfactant synthesis was 1:0.5 with an IFT of 6.7x10-3 mN/m. Characterization of the product using FTIR and HNMR has proven the creation of polymeric surfactant. Based on the wettability alteration study, it confirmed that the product has an ability to alter from the initial oil-wet to water-wet quartz surface. In conclusion, the polymeric surfactant has ultralow IFT and could be an alternative surfactant for chemical flooding because the IFT value met with the required standard for chemical flooding ranges from 10-2 to 10-3 mN/m.Keywords: Enhanced Oil recovery, Interfacial Tension, Methyl Ester Sulfonate, Polymeric surfactant, vinyl acetate


Author(s):  
Jianlong Xiu ◽  
Tianyuan Wang ◽  
Ying Guo ◽  
Qingfeng Cui ◽  
Lixin Huang ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1952-1959
Author(s):  
Yi Zhao ◽  
Fangfang Peng ◽  
Yangchuan Ke

Emulsion with small particle size and good stability stabilized by emulsifiers was successfully prepared for EOR application.


2010 ◽  
Vol 49 (24) ◽  
pp. 12756-12761 ◽  
Author(s):  
Ajay Mandal ◽  
Abhijit Samanta ◽  
Achinta Bera ◽  
Keka Ojha

Author(s):  
Ahmed Ragab ◽  
Eman M. Mansour

The enhanced oil recovery phase of oil reservoirs production usually comes after the water/gas injection (secondary recovery) phase. The main objective of EOR application is to mobilize the remaining oil through enhancing the oil displacement and volumetric sweep efficiency. The oil displacement efficiency enhances by reducing the oil viscosity and/or by reducing the interfacial tension, while the volumetric sweep efficiency improves by developing a favorable mobility ratio between the displacing fluid and the remaining oil. It is important to identify remaining oil and the production mechanisms that are necessary to improve oil recovery prior to implementing an EOR phase. Chemical enhanced oil recovery is one of the major EOR methods that reduces the residual oil saturation by lowering water-oil interfacial tension (surfactant/alkaline) and increases the volumetric sweep efficiency by reducing the water-oil mobility ratio (polymer). In this chapter, the basic mechanisms of different chemical methods have been discussed including the interactions of different chemicals with the reservoir rocks and fluids. In addition, an up-to-date status of chemical flooding at the laboratory scale, pilot projects and field applications have been reported.


Fuel ◽  
2019 ◽  
Vol 235 ◽  
pp. 995-1009 ◽  
Author(s):  
Nilanjan Pal ◽  
Sudhir Kumar ◽  
Achinta Bera ◽  
Ajay Mandal

Sign in / Sign up

Export Citation Format

Share Document