scholarly journals Enhanced Oil Recovery: Chemical Flooding

Author(s):  
Ahmed Ragab ◽  
Eman M. Mansour

The enhanced oil recovery phase of oil reservoirs production usually comes after the water/gas injection (secondary recovery) phase. The main objective of EOR application is to mobilize the remaining oil through enhancing the oil displacement and volumetric sweep efficiency. The oil displacement efficiency enhances by reducing the oil viscosity and/or by reducing the interfacial tension, while the volumetric sweep efficiency improves by developing a favorable mobility ratio between the displacing fluid and the remaining oil. It is important to identify remaining oil and the production mechanisms that are necessary to improve oil recovery prior to implementing an EOR phase. Chemical enhanced oil recovery is one of the major EOR methods that reduces the residual oil saturation by lowering water-oil interfacial tension (surfactant/alkaline) and increases the volumetric sweep efficiency by reducing the water-oil mobility ratio (polymer). In this chapter, the basic mechanisms of different chemical methods have been discussed including the interactions of different chemicals with the reservoir rocks and fluids. In addition, an up-to-date status of chemical flooding at the laboratory scale, pilot projects and field applications have been reported.

2021 ◽  
Author(s):  
Youyi Zhu ◽  
Peng Yu ◽  
Jian Fan

Abstract Chemical flooding is one of enhanced oil recovery (EOR) methods. The primary mechanism of EOR of chemical flooding is interfacial tension reduction, mobility ratio improvement and wettability changes. Recent studies showed that enhancing emulsification performance was beneficial to improve oil displacement efficiency. The formation of Pickering emulsion by nanoparticles could greatly improve the emulsifying performance. Using nanoparticles stabilized emulsions for chemical EOR application is a novel method. In this study, six different types of nanoparticles were selected, including hydrophilic nano silica, modified nano silica, carbon nanotubes and bentonite, etc. The nanoparticle combine with petroleum sulfonate could form a stable emulsion. Particle wettability were measured by using contact angle measurement (OCA20). Emulsifying intensity index was measured for different nanoparticle-stabilized emulsions. The mechanisms of nanoparticle-stabilized emulsions and relationship between emulsion stability have been investigated. The influence of dispersant on nanoparticle-stabilized emulsions also has been investigated. Nanoparticles mainly play a role in improving the stability of emulsions while surfactant play a major role in enhancing the emulsifying dispersion. The wettability of solid particles was one of the most important factors that affects the stability of emulsions. Partial hydrophobic nanoparticles were much easier to form stable emulsions than hydrophilic nanoparticles. Nanoparticles could form a three-dimensional network structure, thereby the stability of the emulsion was improved. Use of surfactant to disperse nanoparticles could further improve the emulsion stability. Finally, three nanoparticles stabilized emulsion formulations were developed for chemical flooding EOR. Nanoparticle-stabilized emulsions could improve oil displacement efficiency in chemical combination flooding. This research was used to optimize chemical combination flooding formulation and has a guidance function for application of nanoparticles in chemical flooding EOR.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Imran Akbar ◽  
Hongtao Zhou ◽  
Wei Liu ◽  
Muhammad Usman Tahir ◽  
Asadullah Memon ◽  
...  

In the petroleum industry, the researchers have developed a new technique called enhanced oil recovery to recover the remaining oil in reservoirs. Some reservoirs are very complex and require advanced enhanced oil recovery (EOR) techniques containing new materials and additives in order to produce maximum oil in economic and environmental friendly manners. In this work, the effects of nanosuspensions (KY-200) and polymer gel HPAM (854) on oil recovery and water cut were studied in the view of EOR techniques and their results were compared. The mechanism of nanosuspensions transportation through the sand pack was also discussed. The adopted methodology involved the preparation of gel, viscosity test, and core flooding experiments. The optimum concentration of nanosuspensions after viscosity tests was used for displacement experiments and 3 wt % concentration of nanosuspensions amplified the oil recovery. In addition, high concentration leads to more agglomeration; thus, high core plugging takes place and diverts the fluid flow towards unswept zones to push more oil to produce and decrease the water cut. Experimental results indicate that nanosuspensions have the ability to plug the thief zones of water channeling and can divert the fluid flow towards unswept zones to recover the remaining oil from the reservoir excessively rather than the normal polymer gel flooding. The injection pressure was observed higher during nanosuspension injection than polymer gel injection. The oil recovery was achieved by about 41.04% from nanosuspensions, that is, 14.09% higher than polymer gel. Further investigations are required in the field of nanoparticles applications in enhanced oil recovery to meet the world's energy demands.


1987 ◽  
Vol 27 (1) ◽  
pp. 378
Author(s):  
B.F. Towler ◽  
B. Bubela

The Alton Field has produced 1.875 million stock tank barrels of oil and is nearing the end of its primary life. It is proposed to enhance the recovery from the field microbiologically. Surfactant producing bacteria will be injected into the reservoir in order to lower the oil/water interfacial tension and mobilise the remaining oil. Laboratory experiments on artifical cores have demonstrated the viability of this process. This MEOR project will initially be done in a one-well cyclic Huff and Puff program.


REAKTOR ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 65-73
Author(s):  
Agam Duma Kalista Wibowo ◽  
Pina Tiani ◽  
Lisa Aditya ◽  
Aniek Sri Handayani ◽  
Marcelinus Christwardana

Surfactants for enhanced oil recovery are generally made from non-renewable petroleum sulfonates and their prices are relatively expensive, so it is necessary to synthesis the bio-based surfactants that are renewable and ecofriendly. The surfactant solution can reduce the interfacial tension (IFT) between oil and water while vinyl acetate monomer has an ability to increase the viscosity as a mobility control. Therefore, polymeric surfactant has both combination properties in reducing the oil/water IFT and increasing the viscosity of the aqueous solution simultaneously. Based on the study, the Critical Micelle Concentration (CMC) of Polymeric Surfactant was at 0.5% concentration with an IFT of 7.72x10-2 mN/m. The best mole ratio of methyl ester sulfonate to vinyl acetate for polymeric surfactant synthesis was 1:0.5 with an IFT of 6.7x10-3 mN/m. Characterization of the product using FTIR and HNMR has proven the creation of polymeric surfactant. Based on the wettability alteration study, it confirmed that the product has an ability to alter from the initial oil-wet to water-wet quartz surface. In conclusion, the polymeric surfactant has ultralow IFT and could be an alternative surfactant for chemical flooding because the IFT value met with the required standard for chemical flooding ranges from 10-2 to 10-3 mN/m.Keywords: Enhanced Oil recovery, Interfacial Tension, Methyl Ester Sulfonate, Polymeric surfactant, vinyl acetate


2019 ◽  
Vol 9 (10) ◽  
pp. 2155 ◽  
Author(s):  
Qi Liu ◽  
Shuangxing Liu ◽  
Dan Luo ◽  
Bo Peng

The liquid phase of foam systems plays a major role in improving the fluidity of oil, by reducing oil viscosity and stripping oil from rock surfaces during foam-flooding processes. Improving the oil displacement capacity of the foam’s liquid phase could lead to significant improvement in foam-flooding effects. Oil-liquid interfacial tension (IFT) is an important indicator of the oil displacement capacity of a liquid. In this study, several surfactants were used as foaming agents, and polymers were used as foam stabilizers. Foaming was induced using a Waring blender stirring method. Foam with an oil-liquid IFT of less than 10–3 mN/m was prepared after a series of adjustments to the liquid composition. This study verified the possibility of a foam system with both an ultra-low oil-liquid IFT and high foaming properties. Our results provide insight into a means of optimizing foam fluids for enhanced oil recovery.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2319 ◽  
Author(s):  
Ahmed Fatih Belhaj ◽  
Khaled Abdalla Elraies ◽  
Mohamad Sahban Alnarabiji ◽  
Juhairi Aris B M Shuhli ◽  
Syed Mohammad Mahmood ◽  
...  

The applications of surfactants in Enhanced Oil Recovery (EOR) have received more attention in the past decade due to their ability to enhance microscopic sweep efficiency by reducing oil-water interfacial tension in order to mobilize trapped oil. Surfactants can partition in both water and oil systems depending on their solubility in both phases. The partitioning coefficient (Kp) is a key parameter when it comes to describing the ratio between the concentration of the surfactant in the oil phase and the water phase at equilibrium. In this paper, surfactant partitioning of the nonionic surfactant Alkylpolyglucoside (APG) was investigated in pre-critical micelle concentration (CMC) and post-cmc regimes at 80 °C to 106 °C. The Kp was then obtained by measuring the surfactant concentration after equilibration with oil in pre-cmc and post-cmc regimes, which was done using surface tension measurements and high-performance liquid chromatography (HPLC), respectively. Surface tension (ST) and interfacial tension (IFT) behaviors were investigated by performing pendant and spinning drop tests, respectively—both tests were conducted at high temperatures. From this study, it was found that APG was able to lower IFT as well as ST between water/oil and air/oil, and its effect was found to be more profound at high temperature. The partitioning test results for APG in pre-cmc and post-cmc regimes were found to be dependent on the surfactant concentration and temperature. The partitioning coefficient is directly proportional to IFT, where at high partitioning intensity, IFT was found to be very low and vice versa at low partitioning intensity. The effect of temperature on the partitioning in pre-cmc and post-cmc regimes had the same impact, where at a high temperature, additional partitioned surfactant molecules arise at the water-oil interface as the association of molecules becomes easier.


2021 ◽  
Author(s):  
M. Qu

Recently, much attention has been directed towards the applications of nanofluids for enhanced oil recovery (EOR). Here, amphiphilic molybdenum disulfide (KH550-MoS2) nanosheets were synthesized using a hydrothermal approach. The physicochemical properties and potential EOR of ultra-low concentration KH550-MoS2 nanofluids were systematically investigated under reservoir conditions at Changqing Oilfield (China) (temperature~55℃ and salinity~7.8×104 mg/L). Interfacial tension (IFT), wettability change, and emulsion stability were measured to evaluate the physicochemical properties of the KH550-MoS2 nanofluids. The results showed that ultra-low concentration of KH550-MoS2 nanofluid (50 mg/L) could decrease IFT to 2.6 mN/m, change the contact angle (CTA) from 131.2° to 51.7° and significantly enhance emulsion stability. Core flooding experiments were conducted to determine the dynamic adsorption loss law and the oil displacement efficiency of KH550-MoS2 nanofluid. The results indicated that the ratio of cumulative produced KH550-MoS2 nanosheets to the total injected KH550-MoS2 nanosheets (CNR) reached 91.5% during flooding in low permeability reservoirs. Moreover, ultra-low concentration KH550-MoS2 nanofluid can increase the oil displacement efficiency by 14% after water driven. This study shows the physicochemical properties of the KH550-MoS2 amphiphilic nanofluid and offers a novel high- efficiency amphiphilic nanofluid for EOR


2016 ◽  
Vol 38 ◽  
pp. 40-46 ◽  
Author(s):  
Hassan Soleimani ◽  
Noor Rasyada Ahmad Latiff ◽  
Noorhana Yahya ◽  
Maziyar Sabet ◽  
Leila Khodapanah ◽  
...  

Due to the geographical location and technological limitation, various novel enhanced oil recovery (EOR) methods has been proposed to recover the remaining oil from a depleted oil reservoir. Research on application of nanoparticles either on its own or coupled with other stimulating agents has been growing enormously and some of them have shown a promising future. In high temperature and high pressure reservoirs, thermal degradation will cause failure to the conventional chemicals. In this work, temperature-stable YIG magnetic nanoparticles with an electromagnetic wave has been proposed as a new candidate for reservoir stimulating agent. The purpose of nanoparticle injection is to increase the sweep efficiency in the reservoir by increasing the viscosity of displacing fluid. In this research, Yttrium iron garnet (YIG) nanoparticles have been injected into a waterflooded oil saturated porous medium to recover the remaining oil in the presence of an electromagnetic wave. At the sintering temperature 1200°C, a mixture of hematite and YIG was obtained, suggesting a higher temperature for single phase YIG. From VSM analysis, the average magnetic saturation, coercivity and remanence are 18.17 emu/g, 21.73 Oe and 2.38 emu/g, respectively. 1.0 wt% of YIG nanofluid was prepared and subsequently injected into the pre-saturated porous medium in the presence of square electromagnetic wave of 13.6 MHz. As much as 43.64% of the remaining oil in place (ROIP) was recovered following the injection of 2 pore volume of YIG nanofluid.


2021 ◽  
pp. 014459872199654
Author(s):  
Yu Bai ◽  
Shangqi Liu ◽  
Guangyue Liang ◽  
Yang Liu ◽  
Yuxin Chen ◽  
...  

Wormlike micelles formed by amidosulfobetaine surfactants present advantage in increasing viscosity, salt-tolerance, thermal-stability and shear-resistance. In the past few years, much attention has been paid on rheology behaviours of amidosulfobetaine surfactants that normally bear C18 or shorter tails. Properties and oil displacement performances of the wormlike micelles formed by counterparts bearing the long carbon chain have not been well documented. In this paper, the various properties of C22-tailed amidosulfobetaine surfactant EHSB under high salinity (TDS = 40g/L) are investigated systematically, including solubility, rheology and interfacial activity. Moreover, its oil displacement performance is studied for the first time. These properties are first compared with those of C16-tailed counterpart HDPS. Results show that the Krafft temperature( TK) of EHSB decreases from above 100°C to 53°C with the increase of TDS to 40 g/L. Increasing concentration of EHSB in the semidilute region induces micelle growth from rod-like micelles to wormlike micelles, and then the worms become entangled or branched to form viscoelastic micelle solution, which will increase the viscosity by several orders of magnitude. The interfacial tension with oil can be reduced to ultra-low level by EHSB solution with concentration below 4.5 mM. Possessing dual functions of mobility control and reducing interfacial tension, wormlike micelles formed by EHSB present a good displacement effect as a flooding system, which is more than 10% higher than HPAM with the same viscosity. Compared with the shorter tailed surfactant, the ultra-long tailed surfactant is more efficient in enhancing viscosity and reducing interfacial tension, so as to enhance more oil recovery. Our work provides a helpful insight for comprehending surfactant-based viscoelastic fluid and provides a new viscoelastic surfactant flooding agent which is quite efficient in chemical flooding of offshore oilfield.


Sign in / Sign up

Export Citation Format

Share Document