Latching Control of a Floating Oscillating Water Column Wave Energy Converter in Irregular Waves

Author(s):  
João C. C. Henriques ◽  
Juan C. Chong ◽  
António F. O. Falcão ◽  
Rui P. F. Gomes

The paper concerns the phase control by latching of a floating oscillating-water-column (OWC) wave energy converter of spar-buoy type in irregular random waves. The device is equipped with a two-position fast-acting valve in series with the turbine. The instantaneous rotational speed of the turbine is controlled through the power electronics according to a power law relating the electromagnetic torque on the generator rotor to the rotational speed, an algorithm whose adequacy had been numerically tested in earlier papers. Two alternative strategies (1 and 2) for the latching/unlatching timings are investigated. Strategy 1 is based on the knowledge of the zero-crossings of the excitation force on the floater-tube set. This is difficult to implement in practice, since the excitation force can neither be measured directly nor predicted. Strategy 2 uses as input easily measurable physical variables: air pressure in the chamber and turbine rotational speed. Both strategies are investigated by numerical simulation based on a time-domain analysis of a spar-buoy OWC equipped with a self-rectifying radial-flow air turbine of biradial type. Air compressibility in the chamber plays an important role and was modelled as isentropic in a fully non-linear way. Numerical results show that significant gains up to about 28% are achievable through strategy 1, as compared with no phase control. Strategy 2, while being much easier to implement in practice, was found to yield more modest gains (up to about 15%).

Author(s):  
J. C. C. Henriques ◽  
A. F. O. Falcão ◽  
R. P. F. Gomes ◽  
L. M. C. Gato

The present paper concerns an oscillating water column (OWC) spar-buoy, possibly the simplest concept for a floating OWC wave energy converter. It is an axisymmetric device (and so insensitive to wave direction) consisting basically of a (relatively long) submerged vertical tail tube open at both ends and fixed to a floater that moves essentially in heave. The length of the tube determines the resonance frequency of the inner water column. The oscillating motion of the internal free surface relative to the buoy, produced by the incident waves, makes the air flow through a turbine that drives an electrical generator. It is well known that the frequency response of point absorbers like the spar buoy is relatively narrow, which implies that their performance in irregular waves is relatively poor. Phase control has been proposed to improve this situation. The present paper presents a theoretical investigation of phase control through the latching of an OWC spar-buoy in which the compressibility of air in the chamber plays an important role (the latching is performed by fast closing and opening an air valve in series with the turbine). In particular, such compressibility may remove the constraint of the latching threshold having to coincide with an instant of zero relative velocity between the two bodies (in the case under consideration, between the floater and the OWC). The modeling is performed in the time domain for a given device geometry and includes the numerical optimization of the air turbine rotational speed, chamber volume, and latching parameters. Results are obtained for regular waves.


Author(s):  
J. C. C. Henriques ◽  
A. F. O. Falcão ◽  
R. P. F. Gomes ◽  
L. M. C. Gato

The present paper concerns an OWC spar-buoy, possibly the simplest concept for a floating oscillating-water-column (OWC) wave energy converter. It is an axisymmetric device (and so insensitive to wave direction) consisting basically of a (relatively long) submerged vertical tail tube open at both ends, fixed to a floater that moves essentially in heave. The length of the tube determines the resonance frequency of the inner water column. The oscillating motion of the internal free surface relative to the buoy, produced by the incident waves, makes the air flow through a turbine that drives an electrical generator. It is well known that the frequency response of point absorbers like the spar buoy is relatively narrow, which implies that their performance in irregular waves is relatively poor. Phase control has been proposed to improve this situation. The present paper presents a theoretical investigation of phase control by latching of an OWC spar-buoy in which the compressibility of air in the chamber plays an important role (the latching is performed by fast closing and opening an air valve in series with the turbine). In particular such compressibility may remove the constraint of latching threshold having to coincide with an instant of zero relative velocity between the two bodies (in the case under consideration, between the floater and the OWC). The modelling is performed in the time domain for a given device geometry, and includes the numerical optimization of the air turbine rotational speed, chamber volume and latching parameters. Results are obtained for regular waves.


Author(s):  
Giacomo Moretti ◽  
Gastone Pietro Papini Rosati ◽  
Marco Alves ◽  
Manuel Grases ◽  
Rocco Vertechy ◽  
...  

In this paper, we present a concept of near/off-shore Oscillating Water Column (OWC) Wave Energy Converter (WEC) that is equipped with a Power Take Off (PTO) unit based on Dielectric Elastomer Generators (DEGs). DEGs are soft/deformable generators with variable capacitance able to directly convert the mechanical energy that is employed for their deformation into electrostatic energy. The proposed WEC is based on an existing tubular collector chamber of an OWC system designed by the company Sendekia, that is combined with an Inflatable Circular Diaphragm (ICD) DEG. This simplified design presents a very reduced number of moving parts showing potentially high efficiency, reliability and noise-free operation. A multi-physics dynamic model of the system is built using time domain linear hydrodynamics coupled with an analytical non-linear electro-hyperelastic model for the DEG-based PTO. The power matrix of the system is calculated for both regular and irregular waves. Some design issues are introduced showing that the electro-elastic response of the DEG provides the system with an additional stiffness that adds up to the hydrostatic stiffness and affects the resonance of the WEC. As a consequence, the geometric shape/dimensions of the OWC chamber and the layout of the DEG diaphragm should be chosen using an integrated procedure aimed at tuning the overall response of the WEC to the spectra a reference wave climate.


2021 ◽  
pp. 32-43
Author(s):  
Augusto Hack da Silva Koch ◽  
Maycon da Silveira Paiva ◽  
Caroline Barbosa Monteiro ◽  
Phelype Haron Oleinik ◽  
Liércio André Isoldi ◽  
...  

The purpose of this study is to computationally analyze the hydropneumatic power available in the air duct of an Oscillating Water Column (OWC) Wave Energy Converter (WEC) device when subject to realistic sea state data (irregular waves) and when submitted to the regular waves representative of this sea state. The OWC WEC is mainly composed of a hydropneumatic chamber and an air duct where a turbine and electric generator are coupled. The chamber is open below the free surface while the duct is open to the atmosphere. The oscillating movement of the water-free surface inside the chamber causes the air to flow, moving the turbine and generating electricity. To execute this study, a bi-dimensional computational model was considered and numerical simulations of wave generation were carried out using ANSYS Fluent, which is a Computational Fluid Dynamics (CFD) software based on the Finite Volume Method (FVM). The Volume of Fluid (VOF) multi-phase model was applied in the treatment of the water-air interaction. To evaluate the average hydropneumatic power available in the duct, the static pressure, velocity, and air mass flow rate were monitored. The results were analyzed, showing that the available power is 250% greater when the device is subject to realistic irregular waves rather than subject to representative regular waves.


2015 ◽  
pp. 437-443
Author(s):  
Harry Bingham ◽  
Robert Read ◽  
Frederik Jakobsen ◽  
Morten Simonsen ◽  
Pablo Guillen ◽  
...  

2021 ◽  
Vol 11 (18) ◽  
pp. 8630
Author(s):  
Yuri Theodoro Barbosa de Lima ◽  
Mateus das Neves Gomes ◽  
Liércio André Isoldi ◽  
Elizaldo Domingues dos Santos ◽  
Giulio Lorenzini ◽  
...  

The work presents a numerical study of a wave energy converter (WEC) device based on the oscillating water column (OWC) operating principle with a variation of one to five coupled chambers. The main objective is to evaluate the influence of the geometry and the number of coupled chambers to maximize the available hydropneumatic power converted in the energy extraction process. The results were analyzed using the data obtained for hydropneumatic power, pressure, mass flow rate, and the calculated performance indicator’s hydropneumatic power. The Constructal Design method associated with the Exhaustive Search optimization method was used to maximize the performance indicator and determine the optimized geometric configurations. The degrees of freedom analyzed were the ratios between the height and length of the hydropneumatic chambers. A wave tank represents the computational domain. The OWC device is positioned inside it, subject to the regular incident waves. Conservation equations of mass and momentum and one equation for the transport of the water volume fraction are solved with the finite volume method (FVM). The multiphase model volume of fluid (VOF) is used to tackle the water–air mixture. The analysis of the results took place by evaluating the performance indicator in each chamber separately and determining the accumulated power, which represents the sum of all the powers calculated in all chambers. The turbine was ignored, i.e., only the duct without it was analyzed. It was found that, among the cases examined, the device with five coupled chambers converts more energy than others and that there is an inflection point in the performance indicator, hydropneumatic power, as the value of the degree of freedom increases, characterizing a decrease in the value of the performance indicator. With the results of the hydropneumatic power, pressure, and mass flow rate, it was possible to determine a range of geometry values that maximizes the energy conversion, taking into account the cases of one to five coupled chambers and the individual influence of each one.


Sign in / Sign up

Export Citation Format

Share Document