Analysis of Wave Interaction With Cylinders Using a 3D Numerical Wave Tank

2014 ◽  
Author(s):  
Arun Kamath ◽  
Hans Bihs ◽  
Øivind A. Arntsen

Evaluation of flow around a cylinder placed in waves is a challenging task due to the complex nature of the flow. A good understanding of the flow physics involved here is important as coastal and offshore structures consist of horizontal and vertical cylindrical elements. This paper explores the use of Computational Fluid Dynamics (CFD) to evaluate the flow field around cylindrical structures. A 3D numerical wave tank is employed to study the free surface and fluid velocities around a vertical cylinder placed in waves and the total force acting on the cylinder is evaluated. The numerical results are compared with experimental data. Further, a simple representation of an offshore structure modelled as multiple cylinders in proximity is also simulated in the numerical wave tank. The presence of neighbouring cylinders has an effect on the flow field. This affects the force acting on each of the cylinders in the group. The forces acting on every cylinder in the group are evaluated and the free surface elevation in the flow field is also visualised. The numerical result is compared with the result from an analytical formula. The numerical model uses the Reynolds-Averaged Navier-Stokes equations to evaluate the flow field. The convective terms are discretized using a 5th-order conservative finite difference WENO scheme. Time discretization is carried out using a 3rd-order Runge-Kutta scheme. Pressure discretization is carried out using Chorin’s projection method. The Poisson pressure equation is solved using a pre-conditioned BiCGStab algorithm. A sharp representation of the free surface is obtained using the level set method. Turbulence modeling is carried out using the k-ω model. Computational performance of the numerical model is improved by parallel processing using the MPI library.

Author(s):  
Hans Bihs ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Øivind Asgeir Arntsen

For the stability of offshore structures, such as offshore wind foundations, extreme wave conditions need to be taken into account. Waves from extreme events are critical from the design perspective. In a numerical wave tank, extreme waves can be modeled using focused waves. Here, linear waves are generated from a wave spectrum. The wave crests of the generated waves coincide at a preselected location and time. Focused wave generation is implemented in the numerical wave tank module of REEF3D, which has been extensively and successfully tested for various wave hydrodynamics and wave–structure interaction problems in particular and for free surface flows in general. The open-source computational fluid dynamics (CFD) code REEF3D solves the three-dimensional Navier–Stokes equations on a staggered Cartesian grid. Higher order numerical schemes are used for time and spatial discretization. For the interface capturing, the level set method is selected. In order to test the generated waves, the time series of the free surface elevation are compared with experimental benchmark cases. The numerically simulated free surface elevation shows good agreement with experimental data. In further computations, the impact of the focused waves on a vertical circular cylinder is investigated. A breaking focused wave is simulated and the associated kinematics is investigated. Free surface flow features during the interaction of nonbreaking focused waves with a cylinder and during the breaking process of a focused wave are also investigated along with the numerically captured free surface.


2021 ◽  
Vol 945 (1) ◽  
pp. 012018
Author(s):  
Mushtaq Ahmed ◽  
Zafarullah Nizamani ◽  
Akihiko Nakayama ◽  
Montasir Osman

Abstract Offshore structures play a vital role in the economy of offshore oil-producing countries, where mostly fixed jacket type structures are used to produce oil and gas installed in shallow water. In an offshore environment where structures are installed, there exist met ocean forces such as wind, waves, and currents. These met ocean conditions when interacting with offshore structures near the free surface, generate loads. The estimation of such loads is very much important for the proper design of these structures. The primary aim of this study is to investigate the interaction of waves with a jacket platform by generating offshore environments in the numerical wave tank (NWT). To achieve this goal, ANSYS Fluent is used for the flow analysis by using continuity and Navier Stokes equation. Results are verified and validated with the analytical work. Wave crests under operating condition generate a force of 1.3 MN which is the lowest in magnitude as compared to wave crest which produces 4.5 MN force under extreme conditions. Unlike operating wave crest, the operating wave trough generates a higher force of 1 MN than extreme conditions which account for 1.5 MN forces. Forces produced by the extreme offshore environment are 30% higher than those generated under operating conditions. It is concluded from the results that a positive force is exerted onto the structure during the water entry phase while a negative force is observed when the water leaves the structure.


Author(s):  
Zaibin Lin ◽  
Ling Qian ◽  
Wei Bai ◽  
Zhihua Ma ◽  
Hao Chen ◽  
...  

Abstract A 3-Dimensional numerical wave tank based on the fully nonlinear potential flow theory has been developed in OpenFOAM, where the Laplace equation of velocity potential is discretized by Finite Volume Method. The water surface is tracked by the semi-Eulerian-Lagrangian method, where water particles on the free surface are allowed to move vertically only. The incident wave is generated by specifying velocity profiles at inlet boundary with a ramp function at the beginning of simulation to prevent initial transient disturbance. Additionally, an artificial damping zone is located at the end of wave tank to sufficiently absorb the outgoing waves before reaching downstream boundary. A five-point smoothing technique is applied at the free surface to eliminate the saw-tooth instability. The proposed wave model is validated against theoretical results and experimental data. The developed solver could be coupled with multiphase Navier-Stokes solvers in OpenFOAM in the future to establish an integrated versatile numerical wave tank for studying efficiently wave structure interaction problems.


Author(s):  
Hui Sun ◽  
Odd M. Faltinsen

A two-dimensional fully nonlinear numerical wave tank is developed by using a boundary element method (BEM). The water depth can be shallow or deep. The waves are generated by simulating a piston wave maker or by specifying the input velocity at the upstream boundary. Fully nonlinear free surface conditions are satisfied in the numerical simulations. In the downstream region, a numerical beach is employed to dissipate the wave energy to avoid waves reflecting from the vertical downstream boundary. When there is a body piercing the free surface, another numerical beach is applied upstream the body to damp out only the reflected waves from the body. Two different applications are presented in this paper. The first one is to compute the pressure and velocity at any point inside the wave field. The other application is to calculate the forces on a horizontal cylinder fixed on the free surface. This second application is related to the investigation of the hydrodynamic forces on the pontoon of a fish farm. Nonlinearities are significant since the wave amplitudes can be large relative to the wavelength and the dimension of the cylinder.


Author(s):  
Gu¨nther F. Clauss ◽  
Christian E. Schmittner ◽  
Robert Stu¨ck

For the deterministic analysis of extreme structure behavior, the hydrodynamics of the exciting wave field, i. e. pressure and velocity fields, must be known. Whereas responses of structures, e. g. motions, can easily be obtained by model tests, the detailed characteristics of the exciting waves are often difficult to determine by measurements. Therefore, numerical wave tanks (NWT) promise to be a handy tool for providing detailed insight into wave hydrodynamics. In this paper different approaches for numerical wave tanks are introduced and used for the simulation of rogue wave sequences. The numerical wave tanks presented are characterized by the following key features: a) Potential theory with Finite Element discretization (Pot/FE); b) Reynolds-Averaged Navier-Stokes Equations (RANSE) using the Volume of Fluid (VOF) method for describing the free surface. For the NWT using the VOF method three different commercial RANSE codes (CFX, FLUENT, COMET) are applied to calculate wave propagation, whereas simulations based on potential theory are carried out with a wave simulation code developed at Technical University Berlin (WAVETUB). It is shown that the potential theory method allows a fast and accurate simulation of the propagation of nonbreaking waves. In contrast, the RANSE/VOF method allows the calculation of breaking waves but is much more time-consuming, and effects of numerical diffusion can not be neglected. To benefit from the advantages of both solvers, i. e. the calculation speed (Pot/FE-solver WAVETUB) and the capability of simulating breaking waves (RANSE/VOF-solver), the coupling of both simulation methods is introduced. Two different methods of coupling are presented: a) at a given position in the wave tank; b) at a given time step. WAVETUB is used to simulate the propagation of the wave train from the start towards the coupling position (case A) or until wave breaking is encountered (case B). Subsequently, the velocity field and the contour of the free surface is handed over as boundary (case A) or initial values (case B) to the RANSE/VOF-solver and the simulation process is continued. To validate these approaches, different types of model seas for investigating wave/structure interactions are generated in a physical wave tank and compared to the numerical simulations.


2019 ◽  
Vol 176 ◽  
pp. 97-117 ◽  
Author(s):  
Hao Chen ◽  
Ling Qian ◽  
Zhihua Ma ◽  
Wei Bai ◽  
Ye Li ◽  
...  

Author(s):  
Zhe Hu ◽  
Wenyong Tang ◽  
Hongxiang Xue ◽  
Shaofei Ren

Recently the research on freak waves has focused on the formation mechanism as well as the experimental and numerical simulation, however the study of freak waves’ action on marine structures which is often confined to numerical methods is still not much. As beams are often studied as the simplified model of plates for structural safety assessment, in this paper, the response of a beam which is hit by a 2-D freak wave is studied. The freak wave is generated in a numerical wave tank (NWT) which solves the 2-D incompressible Navier-Stokes equations. The freak wave is based on the data of real sea condition in the Sea of Japan. An efficient wave absorbing method which satisfies the mass conservation is applied in the numerical wave tank. The influence of the beam’s motion on the freak wave fluid field is also considered in this paper, as well as different boundary conditions of the beam. It is found that the natural frequency has a great impact on the response of the beam.


2016 ◽  
Author(s):  
Hans Bihs ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Øivind A. Arnsten

For the stability of offshore structures, such as offshore wind foundations, extreme wave conditions need to be taken into account. Waves from extreme events can become critical from design perspective. In a numerical wave tank, extreme waves can be generated through focussed waves. Here, linear waves are generated from a wave spectrum. The wave crests of the generated waves coincide at a pre-selected location and time. In order to test the generated waves, the time series of the free surface elevation are compared with experimental benchmark cases. The numerically simulated free surface shows good agreement with the measurements from experiments. In further computations, the wave impact of the focussed waves on a vertical circular cylinder is investigated. The focussed wave generation is implemented in the numerical wave tank module of REEF3D, which has been extensively and successfully tested for various wave hydrodynamics and wave-structure interaction problems in particular and for free surface flows in general. The open-source CFD code REEF3D solves the three-dimensional Navier-Stokes equations on a staggered Cartesian grid. Solid boundaries are taken into account with the ghost cell immersed boundary method. For the discretization of the convection terms of the momentum equations, the conservative finite difference version of the fifth-order WENO (weighted essentially non-oscillatory) scheme is used. For temporal treatment, the third-order TVD (total variation diminishing) Runge-Kutta scheme is employed. For the pressure, the projection method is used. The free surface flow is solved as two-phase fluid system. For the interface capturing, the level set method is selected. The level set function can be discretized with high-order differencing schemes. This makes it the appropriate solution for wave propagation problems based on Navier-Stokes solvers, which requires high-order numerical methods to avoid artificial wave damping. The numerical model is fully parallelized based on the domain decomposition, using MPI (message passing interface) for internode communication.


2013 ◽  
Author(s):  
Mayilvahanan Alagan Chella ◽  
Hans Bihs ◽  
Arun Kamath ◽  
Michael Muskulus

Wave breaking is a highly unsteady, non-linear and extremely turbulent phenomenon. During the wave breaking process, the energy of the wave system is focused close to the crest of the wave and a spatial spread of wave energy occurs. Thus, the description of such a physical phenomenon is highly complex and it requires a deep insight into the breaking wave process. The accurate assessment of breaking wave kinematics is essential for an accurate prediction of hydrodynamic loads on structures. Besides, the understanding of the transformation of waves propagating over an artificial or natural reef is important concerning the coastal processes. The numerical model used in this study is a two-phase model, which solves the flow problem for air and water simultaneously. The Navier-Stokes equations are solved on uniform Cartesian grids in two dimensions. The complex free surface is captured by the level set method. A staggered grid is used for the computation with the velocities defined at the cell edges and the pressure at the cell centres. This avoids unphysical pressure oscillations that can occur due to the coupling of pressure and velocity in the incompressible Navier-Stokes equations. The Ghost Cell Immersed Boundary Method is employed to handle the boundary conditions for complex boundaries. Turbulence modelling is carried out using the k-ω model. Discretization of the convective terms is performed using the 5th order Weighted Essentially Non-Oscillatory (WENO) scheme. In this study, a two-dimensional numerical wave tank is used to simulate waves propagating over steep slopes and wave dissipation. The main objective of the present study is to investigate the wave breaking process over a submerged reef. This is accomplished by examining the wave profile during wave breaking and the breaker indices. Also, the numerical results are compared to data from physical experiments and the numerical results exhibit reasonable agreement with experimental data.


Sign in / Sign up

Export Citation Format

Share Document