Bilge Keel Influence on the Free Decay of Roll Motion of a Three-Dimensional Hull

Author(s):  
Ronald W. Yeung ◽  
Yichen Jiang

The prediction of roll motion of a ship with bilge keels is particularly difficult because of the nonlinear characteristics of the viscous damping. Flow separation and vortex shedding caused by bilge keels significantly affect the roll damping and the magnitude of the roll response. To predict free response of roll, the Slender-Ship Free-Surface Random Vortex Method (SSFSRVM) developed in Seah & Yeung (2008) [1] was employed. It is a fast free-surface viscous-flow solver designed to run on a standard desktop computer. It features a quasi-three dimensional formulation that allows the decomposition of the three-dimensional hull problem into a series of two-dimensional computational planes, in which the two-dimensional free-surface Navier-Stokes solver FSRVM [2] can be applied. This SSFSRVM methodology has recently been further developed to model multi-degrees of freedom of free-body motion in the time domain. In this paper, we will first examine the effectiveness of SSFSRVM modeling by comparing the time histories of free roll-decay motion resulting from simulations and experimental measurements. Furthermore, the detailed vorticity distribution near a bilge keel obtained from the numerical model will also be compared with the experimental PIV images. Next, we will report, based on the time-domain simulation of the coupled hull and fluid motion, how the roll decay coefficients and the flow field are altered by the span of the bilge keels. Plots of vorticity contour and vorticity iso-surface along the three-dimensional hull will be presented to reveal the motion of fluid particles and vortex filaments near the keels. It is appropriate and an honor for me to present this roll-damping research in the Emeritus Professor J. R. Paulling Honoring Symposium. It was from “Randy” that I first acquired the concept of equivalent linear damping. Even more so, I am very grateful for his teaching, guidance and friendship of many years. — R. W. Yeung

Author(s):  
Yichen Jiang ◽  
Ronald W. Yeung

The prediction of roll motion of a ship with bilge keels is particularly difficult because of the nonlinear characteristics of the viscous roll damping. Flow separation and vortex shedding caused by bilge keels significantly affect the roll damping and hence the magnitude of the roll response. To predict the ship motion, the Slender-Ship Free-Surface Random-Vortex Method (SSFSRVM) was employed. It is a fast discrete-vortex free-surface viscous-flow solver developed to run on a standard desktop computer. It features a quasi-three-dimensional formulation that allows the decomposition of the three-dimensional ship-hull problem into a series of two-dimensional computational planes, in which the two-dimensional free-surface Navier–Stokes solver Free-Surface Random-Vortex Method (FSRVM) can be applied. In this paper, the effectiveness of SSFSRVM modeling is examined by comparing the time histories of free roll-decay motion resulting from simulations and from experimental measurements. Furthermore, the detailed two-dimensional vorticity distribution near a bilge keel obtained from the numerical model will also be compared with the existing experimental Digital Particle Image Velocimetry (DPIV) images. Next, we will report, based on the time-domain simulation of the coupled hull and fluid motion, how the roll-decay coefficients and the flow field are altered by the span of the bilge keels. Plots of vorticity contour and vorticity isosurface along the three-dimensional hull will be presented to reveal the motion of fluid particles and vortex filaments near the keels.


2010 ◽  
Vol 54 (02) ◽  
pp. 79-94 ◽  
Author(s):  
Xinshu Zhang ◽  
Piotr Bandyk ◽  
Robert F. Beck

Large-amplitude, time-domain, wave-body interactions are studied in this paper for problems with forward speed. Both two-dimensional strip theory and three-dimensional computation methods are shown and compared by a number of numerical simulations. In the present approach, an exact body boundary condition and linearized free surface boundary conditions are used. By distributing desingularized sources above the calm water surface and using constant-strength flat panels on the exact body surface, the boundary integral equations are solved numerically at each time step. The strip theory method implements Radial Basis Functions to approximate the longitudinal derivatives of the velocity potential on the body. Once the fluid velocities on the free surface are computed, the free surface elevation and potential are updated by integrating the free surface boundary conditions. After each time step, the body surface and free surface are regrided due to the instantaneous changing wetted body geometry. Extensive results are presented to validate the efficiency of the present methods. These results include the added mass and damping computations for a Wigley III hull and an S-175 hull with forward speed using both two-dimensional and three-dimensional approaches. Exciting forces acting on a Wigley III hull due to regular head seas are obtained and compared using both the fully three-dimensional method and the two-dimensional strip theory. All the computational results are compared with experiments or other numerical solutions.


Author(s):  
D. C. Hong ◽  
S. Y. Hong ◽  
H. G. Sung

The radiation and diffraction potentials of a ship advancing in waves are calculated in the time-domain using the three-dimensional time-domain forward-speed free-surface Green function and the Green integral equation on the basis of the Neumann-Kelvin linear wave hypothesis. The Green function approximated by Newman for large time is used together with the Green function by Lamb for small time. The time-domain diffraction problem is solved for the time derivative of the potential by using the time derivative of the impulsive incident wave potential represented by using the complementary complex error function. The integral equation for the potential is discretized according to a second-order boundary element method where the collocation points are located inside the panel. It makes it possible to take account of the line integral along the waterline in a rigorous manner. The six-degree-of-freedom motion and memory functions as well as the diffraction impulse response functions of a hemisphere and the Wigley seakeeping model are presented for various Froude numbers. Comparisons of the wave damping and exciting force and moment coefficients for zero forward speed, calculated by using the Fourier transforms of the time-domain results and the frequency-domain coefficients calculated by using the improved Green integral equation which is free of the irregular frequencies, have been shown to be satisfactory. The wave damping coefficients for non-zero forward speed, calculated by using Fourier transforming of the present time-domain results have also been compared to the experimental results and agreement between them has been shown to be good. A simulation of coupled heave-pitch motion of the Wigley seakeeping model advancing in regular head waves of unit amplitude has been carried out.


Author(s):  
Nathan Tom ◽  
Robert Seah ◽  
Dominique Roddier

Traditional frequency domain based vessel motion analyses operate under the assumption that the roll damping contribution from the port and starboard bilge keels are equivalent. In this work, we examine the roll motion of a vessel with bilge keels of unequal length using a novel methodology. Experiments conducted during the FPSO Roll JIP suggest that waves approaching from port versus starboard will induce different motion amplitudes due to the unequal bilge keel length. We examine the results from different approaches, comparing the computed response from a frequency domain analysis against those provided by a time domain model using Orcaflex with bilge keel represented by drag elements.


2003 ◽  
Vol 9 (7) ◽  
pp. 839-862 ◽  
Author(s):  
Khaled S. Youssef ◽  
Dean T. Mook ◽  
Ali H. Nayfeh ◽  
Saad A. Ragab

Roll motion is an undesirable feature of the behavior of a ship in rough seas, and so it is natural to consider ways of reducing it. The most common devices for increasing roll damping are bilge keels. However, the effectiveness of keels is limited, and anti-roll tanks and fins are used when more control is required. Moreover, unlike keels, anti-roll tanks can be used when the ship is not underway. Our objective is to develop design procedures for passive tanks for roll reduction in rough seas. To this end, we develop an improved model of the passive tank-liquid motion in this paper. This tank consists of U-shaped tubes placed side by side along the length of the ship. The equations of six-degrees-of-motion (6DOF) that govern the tank-liquid are coupled with those that govern the 6DOF motion of the ship, and all of the equations are integrated simultaneously in the time domain using the Large Amplitude Motion Program (“LAMP”). LAMP is a three-dimensional time-domain simulation of the motion of ships in waves. The unstabilized and stabilized roll motions of a S60-70 ship with forward speed and beam waves have been analyzed. For high-amplitude waves, the variation of the roll angle with the encounter-wave frequency exhibits typical nonlinear phenomena: a shift in the resonance frequency, multi-valued responses, and jumps. The performance of passive tanks on a S60-70 ship with forward speed is investigated in an irregular sea with different encounter-wave directions. It is found that passive anti-roll tanks tuned in the nonlinear range are very effective in reducing the roll motion. The effect of the tank mass and distribution of tank tubes on the performance of the tank system is studied. Also, it is found that passive anti-roll tanks are very effective in reducing the roll motion in sea state five of a ship whose pitch frequency is nearly twice its roll frequency.


2020 ◽  
Vol 27 (1) ◽  
pp. 29-38
Author(s):  
Teng Zhang ◽  
Junsheng Ren ◽  
Lu Liu

AbstractA three-dimensional (3D) time-domain method is developed to predict ship motions in waves. To evaluate the Froude-Krylov (F-K) forces and hydrostatic forces under the instantaneous incident wave profile, an adaptive mesh technique based on a quad-tree subdivision is adopted to generate instantaneous wet meshes for ship. For quadrilateral panels under both mean free surface and instantaneous incident wave profiles, Froude-Krylov forces and hydrostatic forces are computed by analytical exact pressure integration expressions, allowing for considerably coarse meshes without loss of accuracy. And for quadrilateral panels interacting with the wave profile, F-K and hydrostatic forces are evaluated following a quad-tree subdivision. The transient free surface Green function (TFSGF) is essential to evaluate radiation and diffraction forces based on linear theory. To reduce the numerical error due to unclear partition, a precise integration method is applied to solve the TFSGF in the partition computation time domain. Computations are carried out for a Wigley hull form and S175 container ship, and the results show good agreement with both experimental results and published results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Souma Jinno ◽  
Shuji Kitora ◽  
Hiroshi Toki ◽  
Masayuki Abe

AbstractWe formulate a numerical method on the transmission and radiation theory of three-dimensional conductors starting from the Maxwell equations in the time domain. We include the delay effect in the integral equations for the scalar and vector potentials rigorously, which is vital to obtain numerically stable solutions for transmission and radiation phenomena in conductors. We provide a formalism to connect the conductors to any passive lumped-parameter circuits. We show one example of numerical calculations, demonstrating that the new formalism provides stable solutions to the transmission and radiation phenomena.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Chen Xia ◽  
Chengzhi Qi ◽  
Xiaozhao Li

Transmitting boundaries are important for modeling the wave propagation in the finite element analysis of dynamic foundation problems. In this study, viscoelastic boundaries for multiple seismic waves or excitations sources were derived for two-dimensional and three-dimensional conditions in the time domain, which were proved to be solid by finite element models. Then, the method for equivalent forces’ input of seismic waves was also described when the proposed artificial boundaries were applied. Comparisons between numerical calculations and analytical results validate this seismic excitation input method. The seismic response of subway station under different seismic loads input methods indicates that asymmetric input seismic loads would cause different deformations from the symmetric input seismic loads, and whether it would increase or decrease the seismic response depends on the parameters of the specific structure and surrounding soil.


Author(s):  
Babak Ommani ◽  
Nuno Fonseca ◽  
Trygve Kristiansen ◽  
Christopher Hutchison ◽  
Hanne Bakksjø

The bilge keel induced roll damping of an FPSO with sponsons is investigated numerically and experimentally. The influence of the bilge keel size, on the roll damping is studied. Free decay tests of a three-dimensional ship model, for three different bilge keel sizes are used to determine roll damping coefficients. The dependency of the quadratic roll damping coefficient to the bilge keel height and the vertical location of the rotation center is studied using CFD. A Navier-Stokes solver based on the Finite Volume Method is adopted for solving the laminar flow of incompressible water around a section of the FPSO undergoing forced roll oscillations in two-dimensions. The free-surface condition is linearized by neglecting the nonlinear free-surface terms and the influence of viscous stresses in the free surface zone, while the body-boundary condition is exact. An averaged center of rotation is estimated by comparing the results of the numerical calculations and the free decay tests. The obtained two-dimensional damping coefficients are extrapolated to 3D by use of strip theory argumentations and compared with the experimental results. It is shown that this simplified approach can be used for evaluating the bilge keel induced roll damping with efficiency, considering unconventional ship shapes and free-surface proximity effects.


Author(s):  
Changkun Wei ◽  
Jiaqing Yang ◽  
Bo Zhang

In this paper, we propose and study the uniaxial perfectly matched layer (PML) method for three-dimensional time-domain electromagnetic scattering problems, which has a great advantage over the spherical one in dealing with problems involving anisotropic scatterers. The truncated uniaxial PML problem is proved to be well-posed and stable, based on the Laplace transform technique and the energy method. Moreover, the $L^2$-norm and $L^{\infty}$-norm error estimates in time are given between the solutions of the original scattering problem and the truncated PML problem, leading to the exponential convergence of the time-domain uniaxial PML method in terms of the thickness and absorbing parameters of the PML layer. The proof depends on the error analysis between the EtM operators for the original scattering problem and the truncated PML problem, which is different from our previous work (SIAM J. Numer. Anal. 58(3) (2020), 1918-1940).


Sign in / Sign up

Export Citation Format

Share Document