Numerical Method Research on Nonlinear Roll System of Large Container Ship

Author(s):  
Yachong Liu ◽  
Ankang Hu ◽  
Fenglei Han ◽  
Yu Lu

When dealing with the ship-roll problem, the roll motion is mainly regarded as a single degree-of-freedom dynamical system, and the nonlinear properties are reflected in the nonlinear damping term and restoring moment term. Previous studies have shown that transverse chaotic phenomenon means the damage of ship-roll stability which will lead to ship capsizing, and for ultra large container ships, the wind area above water surface can not be neglected, which turns the ship-roll system into asymmetric dynamical system. The concept of safe basin is usually used to express the boundedness of motion. It is defined as the set of bounded solution to dynamical system, and the erosion phenomenon of safe basin is normally explained as the global instability. This concept was firstly brought out by Thompson [1] when he studied the problem of ship capsizing and then was applied to different fields of engineering. Based on this background, the following three tasks are completed in this paper. a) For the calculation of chaos threshold, two numerical methods, namely, Pade approximation and Gauss-Legendre integration are adopted, analyzed and compared. b) One 9200TEU container ship is selected and the chaos threshold is calculated by virtue of Gauss-Legendre method. As numerical verification, the gradually erosion phenomenon of ship’s safe basin is observed and phase trajectories of points located in broken domain are traced; c) When encountered with crosswind (When winds are not parallel to or directly against the line of travel, the wind is said to have a crosswind component; that is, the force can be separated into two vector components, a crosswind component and a headwind or tailwind component.), the symmetry of ship-roll system begin to break. In the last part of this paper, the effect of crosswind on safe basin, asymmetry, and stability are studied.

2016 ◽  
Vol 60 (2) ◽  
pp. 92-100 ◽  
Author(s):  
Oleg Gaidai ◽  
Gaute Storhaug ◽  
Arvid Naess

2012 ◽  
Vol 81 (6) ◽  
pp. 485-488
Author(s):  
Masanobu TOYODA ◽  
Tsunehisa HANDA

Author(s):  
Imran Akhtar ◽  
Ali H. Nayfeh

Control of fluid-structure interaction is of practical importance from the perspective of wake modification and reduction of vortex-induced vibrations (VIVs). The aim of this study is to design a control to suppress vortex shedding. We perform a two-dimensional simulation of the flow past a circular cylinder using a parallel Computational Fluid Dynamics (CFD) solver. We record the velocity and pressure fields over a shedding cycle and compute the proper orthogonal decomposition (POD) modes of the divergence-free velocity and pressure, respectively. The Navier–Stokes equations are projected onto these POD modes to reduce the dynamical system to a set of ordinary-differential equations (ODEs). This dynamical system exhibits a limit cycle with negative linear damping and positive nonlinear damping. The reduced-order model is then modified by placing a pair of suction actuators and applying a control strategy using a control function method. We use the pressure POD mode distribution on the cylinder surface to optimally locate the actuators. We design a controller based on the linearized system and make it positively damped using pole-placement technique. The control-input settles to a constant value, suggesting constant suction through the actuators. We validate the results using CFD simulations in an open-loop setting and observe suppression of the hydrodynamic forces acting on the cylinder.


2022 ◽  
Vol 243 ◽  
pp. 110335
Author(s):  
Ying Tang ◽  
Shi-Li Sun ◽  
Rui-Song Yang ◽  
Hui-Long Ren ◽  
Xin Zhao ◽  
...  

2016 ◽  
Vol 60 (02) ◽  
pp. 92-100
Author(s):  
Oleg Gaidai ◽  
Gaute Storhaug ◽  
Arvid Naess

The paper describes a method for prediction of large container ship extreme roll angles occurring during sailing in harsh weather. Rolling is coupled with other ship motions and exhibits highly nonlinear behavior. Risk of losing containers due to a large roll is primary concern for ship transport. Because of non-stationarity and complicated nonlinearities of both waves and ship motions, it is a considerable challenge to model such a phenomenon. In case of extreme motions, the role of nonlinearities dramatically increases, activating effects of second and higher order. Moreover, laboratory tests may also be questioned because of the scaling and the sea state choice. Therefore, data measured on actual ships during their voyages in harsh weather provide a unique insight into statistics of ship motions. The aim of this work is to benchmark state of art method, which makes it possible to extract the necessary information about the extreme response from onboard measured time histories. The method proposed in this paper opens up the possibility to predict simply and efficiently both short- and long-term extreme response statistics.


2014 ◽  
Author(s):  
K Ouchi ◽  
◽  
Y Tanaka ◽  
A Taniguchi ◽  
J Takashina ◽  
...  

2020 ◽  
Vol 10 (8) ◽  
pp. 2978
Author(s):  
Ryo Hanada ◽  
Tetsuo Okada ◽  
Yasumi Kawamura ◽  
Tetsuji Miyashita

In this study, as a preliminary attempt to reveal the whipping response of large container ships in actual seaways, the stress monitoring data of an 8600 TEU large container ship were analyzed. The measurement lasted approximately five years, and using a large amount of data, we investigated how the sea state and operational conditions affected the whipping response. In addition, the midship longitudinal stresses were decomposed into hull girder vertical bending, horizontal bending, and torsional and axial components. Thereafter, we found that the whipping magnitude on the torsional and horizontal bending components is much smaller than that on the vertical bending component. Future research would include the analysis of a larger amount of data, analysis of other sensor data, and effects of various patterns of vibrational response on the ultimate strength and fatigue strength. The obtained results will benefit the future design and operation of large container ships for safer navigation.


Author(s):  
Yongwon Lee ◽  
Zhenhong Wang ◽  
Nigel White ◽  
Spyros E. Hirdaris

As part of WILS II (Wave Induced Loads on Ships) Joint Industry Project organised by MOERI (Maritime and Ocean Engineering Research Institute, Korea), Lloyd’s Register has undertaken time domain springing and whipping analyses for a 10,000 TEU class container ship using computational tools developed in the Co-operative Research Ships (CRS) JIP [1]. For idealising the ship and handling the flexible modes of the structure, a boundary element method and a finite element method are employed for coupling fluid and structure domain problems respectively. The hydrodynamic module takes into account nonlinear effects of Froude-Krylov and restoring forces. This Fluid Structure Interaction (FSI) model is also coupled with slamming loads to predict wave loads due to whipping effects. Vibration modes and natural frequencies of the ship hull girder are calculated by idealising the ship structure as a Timoshenko beam. The results from springing and whipping analyses are compared with the results from linear and nonlinear time domain calculations for the rigid body. The results from the computational analyses in regular waves have been correlated with those from model tests undertaken by MOERI. Further the global effects of springing and whipping acting on large container ships are summarised and discussed.


Sign in / Sign up

Export Citation Format

Share Document