scholarly journals High Cycle Fatigue Damage Evaluation of Steel Pipelines Based on Microhardness Changes During Cyclic Loads

Author(s):  
Geovana Drumond ◽  
Bianca Pinheiro ◽  
Ilson Pasqualino ◽  
Francine Roudet ◽  
Didier Chicot ◽  
...  

Fatigue is a major cause of failures concerning metal structures, being capable of causing catastrophic damage to the environment and considerable financial loss. Steel pipelines used in oil and gas industry for hydrocarbon transportation, for instance, are submitted to the action of cyclic loads, being susceptible to undergo fatigue failures. The phenomenon of metal fatigue is a complex process comprising different successive mechanisms. In general, four stages can be identified, representing microcrack initiation (nucleation), microcracking, macrocrack propagation, and final fracture. Fatigue damage prior to nucleation of microcracks is primarily related to localized plastic strain development at or near material surface during cycling. The microhardness of the material shows its ability to resist microplastic deformation caused by indentation or penetration, and is closely related to the material plastic slip capacity. Therefore, the study of changes in material surface microhardness during the different stages of fatigue process can estimate the evolution of the material resistance to microplastic deformations and, consequently, provide relevant information about the cumulated fatigue damage on the surface. The present work is part of a research study being carried out with the aim of proposing a new method based on microstructural changes, represented by a fatigue damage indicator, to predict fatigue life of steel structures submitted to cyclic loads, before macroscopic cracking. In a previous work, the X-ray diffraction technique was used to evaluate these changes. This technique presents several advantages, since it is non-destructive and concerns the surface and subsurface of the material, where major microstructural changes take place during fatigue. The most important parameter obtained by this technique is the full width at half maximum (FWHM) of the diffraction peak, which can provide information about the dislocation network density and estimate microdeformations. It was found that the evolution of this parameter with cycling presents three different stages, associated to the mechanisms of microcrack initiation, microcracking, macrocrack propagation, respectively. Here, the fatigue damage of pipeline steels is evaluated through microhardness testing. Different stages of changes in microhardness are also found and they are correlated to those observed with the X-ray technique and also with transmission electron microscopic (TEM) images from experimental tests performed with a similar material. This correlation can help to corroborate the X-ray diffraction results previously obtained and recommend then this non-destructive technique as the base of the method for predicting fatigue life of steel structures proposed here.

Author(s):  
Geovana Drumond ◽  
Bianca Pinheiro ◽  
Ilson Pasqualino ◽  
Francine Roudet ◽  
Didier Chicot

The hardness of a material shows its ability to resist to microplastic deformation caused by indentation or penetration and is closely related to the plastic slip capacity of the material. Therefore, it could be significant to study the resistance to microplastic deformations based on microhardness changes on the surface, and the associated accumulation of fatigue damage. The present work is part of a research study being carried out with the aim of proposing a new method based on microstructural changes, represented by a fatigue damage indicator, to predict fatigue life of steel structures submitted to cyclic loads, before macroscopic cracking. Here, Berkovich indentation tests were carried out in the samples previously submitted to high cycle fatigue (HCF) tests. It was observed that the major changes in the microhardness values occurred at the surface of the material below 3 μm of indentation depth, and around 20% of the fatigue life of the material, proving that microcracking is a surface phenomenon. So, the results obtained for the surface of the specimen and at the beginning of the fatigue life of the material will be considered in the proposal of a new method to estimate the fatigue life of metal structures.


2007 ◽  
Vol 353-358 ◽  
pp. 130-133
Author(s):  
Keun Bong Yoo ◽  
Jae Hoon Kim

The objective of this study is to examine the feasibility of the X-ray diffraction method for the fatigue life assessment of high-temperature steel pipes used for main steam pipelines, re-heater pipelines and headers etc. in power plants. In this study, X-ray diffraction tests were performed on the specimens simulated for low cycle fatigue damage, in order to estimate fatigue properties at the various stages of fatigue life. As a result of X-ray diffraction tests, it was confirmed that the full width at the half maximum (FWHM) decreased with an increase in the fatigue life ratio, and that the FWHM and the residual stress due to fatigue damage were algebraically linearly related to the fatigue life ratio. From this relationship, a direct assessment of the remaining fatigue life was feasible.


Author(s):  
Bianca Pinheiro ◽  
Jacky Lesage ◽  
Ilson Pasqualino ◽  
Noureddine Benseddiq ◽  
Edoardo Bemporad

Steel pipes used for oil and gas exploitation undergo the action of cyclic loads that can cause their failure by fatigue. A consistent evaluation of the fatigue behavior should take into account the micromechanisms of fatigue damage initiation, which precede macroscopic cracking and macrocrack propagation. In this work, microstructural changes in terms of variations in microdeformations and residual stresses (macrostresses) are evaluated by X-ray diffraction in real time during alternating bending fatigue tests performed on samples taken from an API 5L X60 grade steel pipe. Three stages of microstructural changes are detected. It is found that their amplitudes and durations are proportional to the level of alternating stress applied. Changes in density and distribution of dislocations are observed by transmission electron microscopy combined with the technique of focused ion beam. To understand the role of the initial dislocation structure, fatigue tests on annealed samples are performed under the same test conditions. Again, three stages of changes are observed, but with an increase in microdeformations during the first stage instead of a decrease as found for as-machined samples, suggesting the influence of the initial state of the dislocation network. The results obtained are very encouraging for the consideration of microstructural evolutions in the development of an indicator of fatigue damage initiation in steel pipes.


2007 ◽  
Vol 26-28 ◽  
pp. 1251-1254
Author(s):  
Sang Guk Lee ◽  
Keun Bong Yoo ◽  
Sung Keun Park ◽  
Duck Gun Park

The objective of this study is to estimate the feasibility of advanced nondestructive method(X-ray diffraction, AE(acoustic emission) and BN(barkhausen noise)measurement application for fatigue life evaluation of the high-temperature pipeline steel such as main steam pipe etc. in power plant. In this study, various nondestructive tests using various types of specimen simulated low cycle fatigue damage were performed in order to analyze fatigue properties when fatigue damage conditions become various stages such as 1/4, 1/2 and 3/4 of fatigue life, respectively. As a result of X-ray diffraction tests for specimens simulated fatigue damages, we conformed that the variation of the full width at half maximum intensity decreased in proportion to the increase of fatigue life ratio. And also, AE and BN signal due to fatigue damage has linear relationship with fatigue life ratio algebraically. From this relationship, it was suggested that direct expectation of the life consumption rate was feasible.


2012 ◽  
Vol 532 ◽  
pp. 158-166 ◽  
Author(s):  
B. Pinheiro ◽  
J. Lesage ◽  
I. Pasqualino ◽  
N. Benseddiq ◽  
E. Bemporad

Author(s):  
Bianca Pinheiro ◽  
Jacky Lesage ◽  
Ilson Pasqualino ◽  
Noureddine Benseddiq ◽  
Edoardo Bemporad

The present work aims to evaluate the microstructural mechanisms associated with the initiation of fatigue damage in steels used in the petroleum industry. Microdeformations and residual stresses (macrostresses) are evaluated by X-ray diffraction in real time during alternating bending fatigue tests performed on samples taken from an API 5L X60 grade steel pipe. Microdeformations are evaluated from measurements of the full width at half maximum (FWHM) of the diffraction peak and residual stresses are estimated from the peak displacement. The evolution of microdeformations shows three regular successive stages of changes. The amplitude of variation of each stage is intensified with increasing stress amplitude, while the duration is reduced. A similar evolution is found for residual stresses, whose stages of changes have nearly the same durations as those of microdeformations. Changes in density and distribution of dislocations are observed by transmission electron microscopy combined with the technique of focused ion beam. To understand the role of the initial structure, fatigue tests on annealed samples are performed under the same test conditions. Again, three stages of changes are observed, but with an increase in microdeformations instead of a decrease during the first stage due to the initial state of the dislocation network. The results are very encouraging for the consideration of microstructural changes measured by X-ray diffraction in the development of a future indicator of fatigue damage initiation in API 5L X60 grade steel pipes.


1975 ◽  
Vol 10 (1) ◽  
pp. 32-41 ◽  
Author(s):  
K Tanaka

This paper describes results of several recent studies, carried out in Japan, on metal-fatigue problems using X-ray diffraction techniques. The subjects covered are the effect of residual stress on fatigue strength, non-destructive detection of fatigue damage from information supplied by X-ray diffraction, and X-ray microbeam analysis of stress and strain near the tips of fatigue cracks and fracture surfaces. The usefulness of the X-ray approach to fatigue problems is emphasized and possible future developments are suggested.


2006 ◽  
Vol 326-328 ◽  
pp. 497-500
Author(s):  
Keun Bong Yoo ◽  
Hyun Sun Choi ◽  
Eui Hyun Kim ◽  
Sun Young Cho ◽  
Jae Hoon Kim

The objective of this study is to estimate the feasibility of X-ray diffraction method application for fatigue life assessment of the high-temperature pipeline steel such as main steam pipe, re-heater pipe and header etc. in power plant. In this study, X-ray diffraction tests using various types of specimen simulated low cycle fatigue damage were performed in order to analyze fatigue properties when fatigue damage conditions become various stages such as 1/4, 1/2 and 3/4 of fatigue life, respectively. As a result of X-ray diffraction tests for specimens simulated fatigue damages, we conformed that the variation of the full width at half maximum intensity decreased in proportion to the increase of fatigue life ratio. And also, the ratio of the full width at half maximum intensity due to fatigue damage has linear relationship with fatigue life ratio algebraically. From this relationship, it was suggested that direct expectation of the life consumption rate was feasible.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Geovana Drumond ◽  
Francine Roudet ◽  
Didier Chicot ◽  
Bianca Pinheiro ◽  
Ilson Pasqualino

Abstract A study was conducted to investigate the effects of surface microhardness on different phases of fatigue damage. This helps to estimate the evolution of the material resistance from microplastic distortions and gives pertinent data about cumulated fatigue damage. The objective of this work is to propose a damage criterion, associated with microstructural changes, to predict the fatigue life of steel structures submitted to cyclic loads before macroscopic cracking. Instrumented indentation tests (IIT) were conducted on test samples submitted to high cycle fatigue (HCF) loads. To evaluate the role of the microstructure initial state, the material was considered in two different conditions: as-received and annealed. It was observed that significant changes in the microhardness values happened at the surface and subsurface of the material, up to 2 µm of indentation depth, and around 21% and 7% of the fatigue life for as-received and annealed conditions, respectively. These percentages were identified as a critical period for microstructural changes, which was taken as a reference in a damage criterion to predict the number of cycles to fatigue failure (Nf) of a steel structure.


Sign in / Sign up

Export Citation Format

Share Document