Sub-Zero Temperature Fatigue Strength of Butt-Welded Normal and High-Strength Steel Joints for Ships and Offshore Structures in Arctic Regions

Author(s):  
Moritz Braun ◽  
Aleksandar-Saša Milaković ◽  
Sören Ehlers ◽  
Adrian Kahl ◽  
Tom Willems ◽  
...  

Abstract Ships and offshore structures operating in Artic regions face specific challenges such as ice loads and seasonal low temperatures. In order to meet these extreme environmental requirements, the effect of temperature on material behaviour needs to be considered. It is well known that static material properties (yield strength, fracture toughness etc.) undergo significant changes with temperature. In recent studies, significantly higher fatigue strength was observed in welded joints in comparison to estimates based on international standards. Fatigue strength increased even for temperatures far below the allowed service temperature based on fracture toughness results; however, studies on fatigue strength of structural steel at sub-zero temperatures are scarce. Moreover, material selection for ships and offshore structures is usually based on empirical Charpy and fracture toughness relations at the design temperature, minus a safety margin. This study aims at introducing an S-N curve database for welded joints that can be used to verify the fatigue design approaches for ships and offshore structures subject to sub-zero temperatures. Therefore, the effect of temperature on the fatigue strength of butt-welded normal and high strength steel structures is analysed experimentally for sub-zero temperatures. For this purpose, fatigue test results of SAW and MAG welded joints for temperatures down to −50 °C are analysed and the potential for changes regarding material selection for ships and offshore structures are discussed.

Author(s):  
Moritz Braun ◽  
Adrian Kahl ◽  
Tom Willems ◽  
Marc Seidel ◽  
Claas Fischer ◽  
...  

Abstract It is well known that material properties undergo significant changes with temperature. In order to meet extreme environmental requirements for ships and offshore structures operating in Arctic regions, the effect of temperature on material behavior needs to be considered. In recent studies, significantly higher fatigue strength was observed for base materials and welded joints in comparison to room temperature. Fatigue strength increased even for temperatures far below the allowed service temperature based on fracture toughness results; however, sub-zero temperatures fatigue data is scarce and effects of steel strength and welding type on fatigue strength changes are unknown. Material selection for ships and offshore structures is typically based on empirical Charpy and fracture toughness relations at the design temperature, minus a safety margin. Thus, this study presents material test results including fatigue tests of butt-welded joints, tensile test, and Charpy impact toughness tests at room and sub-zero temperatures of different structural steel types. Additionally, the effect of welding techniques and steel strength are discussed. The results can be used to extend design approaches for ships and offshore structures subject to sub-zero temperatures and to improve material selection for ships and offshore structures operating in Arctic regions.


1996 ◽  
pp. 133-140 ◽  
Author(s):  
Kazuo Tateishi ◽  
Kab-Soo Kyung ◽  
Fumitaka Machida ◽  
Chitoshi Miki

Author(s):  
Ho Jung Kim ◽  
Sung Won Kang ◽  
Jae Myung Lee ◽  
Myung Hyun Kim

The aim of the present paper is to investigate and to compare the fatigue characteristics of butt welded joints made of high strength steel with tensile strength 700MPa. The influence of different back plate materials and the groove shapes of copper backing are investigated. Various backing methods have been used in the steel construction industries, but steel backing, which is the most frequently used, sometimes is not capable of providing sufficient fatigue strengths for welded joint, particularly for high strength steel. Therefore, alternative backing methods have been investigated in order to improve the fatigue strength by employing ceramic backing, CMT (Cold Metal Transfer) [1] and copper backing. The main objective of the work is to estimate the fatigue test results for improving fatigue strength by comparing different backing materials and groove shapes. A series of fatigue tests with different types of backings has been carried out to obtain the fatigue life of butt welded joints. It was observed that the fatigue behavior of welded joints can be substantially improved by changing back bead shapes. The result has shown that the back bead shape of copper backing is better than others except for that of CMT, accompanied by improved fatigue strength.


1997 ◽  
pp. 97-106 ◽  
Author(s):  
Kab Soo Kyung ◽  
Takeshi Mori ◽  
Chitoshi Miki ◽  
Tsuyosi Tachibana

Author(s):  
Moritz Braun

Abstract Ships and offshore structures in Arctic environments are exposed to severe environmental actions and sub-zero temperatures. Thus, the design of such structures has to account for the Arctic environment and must be cost-efficient at the same time. A vital part of the design process is to ensure that fatigue-induced failure does not occur in the lifetime of the structure. While effects of high temperatures on material behavior are well covered in international standards and guidelines, there is no comprehensive guidance for sub-zero temperature fatigue strength assessment. Additionally, stress-life (S–N) test data of welded joints at sub-zero temperatures is particularly scarce. Hence, this study presents an extensive review of recent test results of various weld details tested in the range of − 50 to 20 °C. This data could build the basis for future considerations of temperature effects in fatigue design guidelines and recommendations. For this purpose, the fatigue test results are submitted to a rigorous statistically assessment—including a summary of the limitations of current design guidelines with respect to sub-zero temperature effects.


Sign in / Sign up

Export Citation Format

Share Document