Evaluation of Cumulative Collapse of a LNG Carrier Hull Girder Under Dynamic Cyclic Bending Moments

2021 ◽  
Author(s):  
Jian Ji ◽  
Bin Liu ◽  
Lin Chen ◽  
Xianting Liao ◽  
C. Guedes Soares

Abstract The present paper continues the recent work reported by Liu and Guedes Soares [1] where finite element simulations were conducted to investigate the ultimate strength of a container ship hull girder under cyclic bending moments. Here a membrane LNG carrier is investigated to evaluate the “cyclic ultimate strength” of this specialized ship hull structure including double bottoms, sides and decks. The paper aims to analyze the ultimate strength and to compare the collapse modes of a LNG carrier hull girder under monotonic and dynamic cyclic bending moments, revealing the difference in their failure modes. Nonlinear finite element method is employed, using the explicit LS-DYNA solver, to analyze the ultimate strength of hull structures. The numerical results show that the cyclic ultimate strength of hull structures is about 20% lower than the monotonic ultimate strength in the present study.

Author(s):  
Muhammad Zubair Muis Alie ◽  
Ganding Sitepu ◽  
Juswan Sade ◽  
Wahyuddin Mustafa ◽  
Andi Mursid Nugraha ◽  
...  

This paper discusses the influence of asymmetrically damaged ships on the ultimate hull girder strength. When such damages take place at the asymmetric location of cross sections, not only translation but also inclination of instantaneous neutral axis takes place during the process of the progressive collapse. To investigate this effect, the Finite Element Analysis (FEA) is employed and the damage is assumed in the middle hold. The collision damage is modeled by removing the plate and stiffener elements at the damage region assuming the complete loss of the capacity at the damage part. For the validation results obtained by Finite Element Analysis of the asymmetrically damaged ship hull girder, the simplified method is adopted. The Finite Element method of ultimate strength analysis of a damaged hull girder can be a practical tool for the ship hull girder after damages, which has become one of the functional requirements in IMO Goal Based Ship Construction Standard.


1998 ◽  
Vol 42 (02) ◽  
pp. 154-165
Author(s):  
Jeom Kee Paik ◽  
Anil K. Thayamballi ◽  
Sung Kyu Kim ◽  
Soo Hong Yang

The aim of the present paper is to develop and demonstrate a procedure for assessment of ship hull girder ultimate strength reliability taking into account the degradation of primary members due to general corrosion. The probabilistic model for ultimate hull girder strength is established on the basis of an analytical formula that considers corrosion related time dependent strength degradation in the various failure modes. Corrosion rates and their probabilistic characterization are based on available studies using gauging data. Applicable extreme hull girder loads are calculated using a simplified direct method for wave load calculation together with the IACS design guidance formula for stillwater bending moment. The variability in strength, corrosion rates and loads are accounted for in the second order reliability method (SORM) based on calculations of the time dependent reliability index. The procedure developed is illustrated by application to both tankers and bulk carriers. For a given set of renewal criteria, apart from trends of hull girder section modulus, ultimate strength and the reliability index as a function of vessel age, the probability of steel renewal due to corrosion is also predicted.


Author(s):  
Guoqing Feng ◽  
Huilong Ren ◽  
Baoqiang Bai ◽  
Chenfeng Li ◽  
Xiaobo Liu

The ultimate strength of ship hull girder has been a study hot spot in ship mechanics. Caldwell method, Smith method, idealized structural unit method and nonlinear finite element method are usually used to predict the ultimate strength of ship hull girder. In the paper, a standardized procedure on the nonlinear finite element analysis of the ultimate strength of ship hull girder is presented. Firstly, the finite element modeling for the ultimate strength of ship hull girder is studied, which include material property, element type, mesh size, model length and boundary conditions. Then, the influence of welding residual stress and initial deflection are studied. For the validation of the method in this paper, a MST-3 model from the test of Nishihara is used as an example. Finally, the results from the nonlinear finite element analysis and Smith method are compared for the ultimate strength analysis of a container ship. The study shows the standardized procedure on the nonlinear finite element analysis of the ultimate strength of ship hull girder is satisfactory and suitable for engineering application.


Author(s):  
Wenbo Huang

Abstract Based on the extreme value of the primary loads of ship hull girder instead of characteristic values, the more reasonable load combination factors are defined. In order to evaluate the random variation of newly defined load combination factors, based on Ferry-Berges & Castanheta (FBC) and Poisson square wave models, the still water bending moments (SWBM), vertical wave bending moments (VWBM) and their combined processes are simulated to get the random realizations of load combination factors. The statistical analysis results show that the load combination factors take the value of 1 with the highest probability and can be well fitted by the Weibull distribution. Such information should be incorporated appropriately in the reliability analysis of ship hull girder.


2020 ◽  
Vol 15 (sup1) ◽  
pp. S161-S175
Author(s):  
Kristjan Tabri ◽  
Hendrik Naar ◽  
Mihkel Kõrgesaar

2014 ◽  
Vol 904 ◽  
pp. 446-449
Author(s):  
Hu Wei Cui ◽  
Ping Yang ◽  
Can Shen ◽  
Liang Zhou

This paper adopts nonlinear finite element method to study the load bearing behavior of ship stiffened plates with different dimensions. The research focuses on the compressive ultimate strength, axial rigidity, and residual plastic deflection of the stiffened plates under cyclic compressive and tensile loads. The results indicate that the compressive ultimate strength and axial rigidity of stiffened plates decrease with the incremental cyclic loads significantly, meanwhile, the residual plastic deflection increases with the cyclic loads.


Author(s):  
Akira Tatsumi ◽  
Masahiko Fujikubo

The purpose of this research is to clarify the effect of bottom local loads on the hull girder collapse behavior of large container ship (8000TEU class) A 1/2+1+1/2 hold model of container ship is analyzed using implicit finite element method. The results reveal two major causes of reduction of hull girder ultimate strength due to local loads. One is biaxial compressive stresses induced at outer bottom. Thus, smaller hogging moment can induce a collapse of bottom panels. The other is a reduction of effectiveness of inner bottom that is on the tension side of local bending. As a result, the container ship attains hull girder ultimate strength with smaller spread of collapse region compared to that under pure bending.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

A simplified technique for determining the shakedown limit load for a long radius 90 deg pipe bend was previously developed (Abdalla, H. F., et al., 2006, “Determination of Shakedown Limit Load for a 90 Degree Pipe Bend Using a Simplified Technique,” ASME J. Pressure Vessel Technol., 128, pp. 618–624; Abdalla, H. F., et al., 2007, “Shakedown Limits of a 90-Degree Pipe Bend Using Small and Large Displacement Formulations,” ASME J. Pressure Vessel Technol., 129, pp. 287–295). The simplified technique utilizes the finite element (FE) method and employs the small displacement formulation to determine the shakedown limit load (moment) without performing lengthy time consuming full cyclic loading finite element simulations or utilizing conventional iterative elastic techniques. The shakedown limit load is determined through the calculation of residual stresses developed within the pipe bend structure. In the current paper, a parametric study is conducted through applying the simplified technique on three scheduled pipe bends, namely, nominal pipe size (NPS) 10 in. Sch. 20, NPS 10 in. Sch. 40 STD, and NPS 10 in. Sch. 80. Two material models are assigned, namely, an elastic perfectly plastic (EPP) material and an idealized elastic-linear strain hardening material obeying Ziegler’s linear kinematic hardening (KH) rule. This type of material model is termed in the current study as the KH-material. The pipe bends are subjected to a spectrum of steady internal pressure magnitudes and cyclic bending moments. The cyclic bending includes three different loading patterns, namely, in-plane closing, in-plane opening, and out-of-plane bending moment loadings of the pipe bends. The shakedown limit moments outputted by the simplified technique are used to generate shakedown diagrams of the scheduled pipe bends for the spectrum of steady internal pressure magnitudes. A comparison between the generated shakedown diagrams for the pipe bends employing the EPP- and the KH-materials is presented. Relatively higher shakedown limit moments were recorded for the pipe bends employing the KH-material at the medium to high internal pressure magnitudes.


Author(s):  
Yangzhe Yu ◽  
Guoqing Feng ◽  
Huilong Ren

The nonlinear finite-element method has been widely used in evaluating the ultimate strength of stiffened plates and part of hull girders, considering the effect of boundary conditions, geometrical initial imperfection and welding-induced residual stress in recent years. However, available research on the ultimate strength of large-sized structures, especially of semi-submersible platform is limited. New large-sized semi-submersible platform has been designed with lateral brace structure and square cross-section columns. The investigation of ultimate strength of the whole structure is of paramount importance in assessing the safety and design of such large structure. Therefore, in this paper, a three-dimensional nonlinear finite element model was developed to investigate the ultimate strength of a new generation of semi-submersible platform under different load conditions and its behavior after collapse using explicit dynamic solvers. Results showed that the time dependent dynamic explicit method was reliable and feasible for the calculation of ultimate strength of such complicated structure. For the target platform, the bracings and upper hull structure were the main bearing component and were critical for the ultimate strength of the whole structure. High stress occurred in connection areas and special attention shall be paid for.


Sign in / Sign up

Export Citation Format

Share Document