State Estimation and Slug Control of the Subsea Multiphase Pipeline

2021 ◽  
Author(s):  
Chao Yu ◽  
Chuan Wang ◽  
Xin Deng ◽  
XueLiang Zhang ◽  
HaiFang Sun ◽  
...  

Abstract The simulation and control of the severe slugging flow in the subsea multiphase pipeline is the focus of research in the production and exploitation of oil companies. Severe slug flow results in severe fluctuations of pressure and flow rate at both the wells end and the receiving host processing facilities, causing safety and shutdown risks. To prevent the severe slugging flow regime in multiphase transport pipelines, an Ordinary Differential Equation (ODE) model is established by using the mass conservation law for individual phases in the pipeline and the riser sections. Then, the proposed model is compared to the results from the OLGA simulation. A comparative study of different slugging flow control solutions is conducted. Unscented Kalman Filter (UKF), Wavelet Neural Network (WNN) and UKF&WNN are used for state estimation and combined with PI controller. The UKF and WNN are good nonlinear filters. However, when the nominal choke opening is increased, they work unsatisfying. The UKF&WNN observer shows slightly better results than UKF and WNN when the system has high input disturbance.

2017 ◽  
Vol 16 (3) ◽  
pp. 587-595
Author(s):  
Vasile Mircea Cristea ◽  
Ph.m Thai Hoa ◽  
Mihai Mogos-Kirner ◽  
Csavdari Alexandra ◽  
Paul Serban Agachi

2019 ◽  
Vol 67 (4) ◽  
pp. 315-329
Author(s):  
Rongjiang Tang ◽  
Zhe Tong ◽  
Weiguang Zheng ◽  
Shenfang Li ◽  
Li Huang

2019 ◽  
Author(s):  
Ujwal Shirode ◽  
Aishwarya Aher ◽  
Pallavi Bale ◽  
Aishwarya Kadam

Author(s):  
Bo Li ◽  
Xiaoting Rui ◽  
Guoping Wang ◽  
Jianshu Zhang ◽  
Qinbo Zhou

Dynamics analysis is currently a key technique to fully understand the dynamic characteristics of sophisticated mechanical systems because it is a prerequisite for dynamic design and control studies. In this study, a dynamics analysis problem for a multiple launch rocket system (MLRS) is developed. We particularly focus on the deductions of equations governing the motion of the MLRS without rockets by using a transfer matrix method for multibody systems and the motion of rockets via the Newton–Euler method. By combining the two equations, the differential equations of the MLRS are obtained. The complete process of the rockets’ ignition, movement in the barrels, airborne flight, and landing is numerically simulated via the Monte Carlo stochastic method. An experiment is implemented to validate the proposed model and the corresponding numerical results.


Sign in / Sign up

Export Citation Format

Share Document