Prediction of Stress Correction Factor for Welded Joints Using Response Surface Models

2021 ◽  
Author(s):  
Arvind Keprate ◽  
Nikhil Donthi

Abstract While performing fatigue reliability analysis of the butt-welded joints it is vital to estimate the Stress Concentration Factor (SCF) at these joints. A common approach adopted by industry to estimate the SCF at weld toes is to perform Finite Element Analysis (FEA) of the welded joints for different pipe sizes, flanges, valves etc. The SCF are calculated for each size by separately when required and are very time consuming. Although FEA is known for its accurate SCF calculation, but due to its high computational expense and time-consumption, SCF evaluation for different parameters makes the aforementioned method quite laborious. As an alternative response surface models (RSM) may be used for accurate estimation of SCF. The two basic steps in constructing a RSM are training and testing. The first corresponds to fitting a model to the intelligently chosen training points, while the second step involves comparing the predictions of the RSM to the actual response. This paper examines the applicability of 12 different RSMs for estimating SCF. The training and testing data is generated using FEA in ANSYS. In order to compare the accuracy of the RSMs, three metrics, namely, Root Mean Square Error (RMSE), Maximum Absolute Error (AAE), and Explained Variance Score (EVS) are used. A case study illustrating the applicability of the proposed approach is also presented.

2014 ◽  
Vol 711 ◽  
pp. 100-103
Author(s):  
Han Liu ◽  
Fang Zhen Song ◽  
Ming Ming Li ◽  
Bo Song

The selection, fitting and evaluation methods of response surface functions are expounded. The parameter sensitivity analysis of the cabin is carried out. The response surface functions of the stress and the vibration frequencies are constructed through the Box-Behnken experimental design method. Fitting inspection on the response surface functions is done with correlation coefficient, correction coefficient, etc. The results show that the response surface models are very similar to the real models. Four design variables are extracted randomly as the test sample of each response surface function. The data gotten by the response surface function are compared with the data gotten by the finite element analysis. The results show that the response surface models are with high accuracy and can reflect the real test values well. These response surface models can be used for further optimization design. They are helpful in reducing the ship mass without exceeding the allowable stress and resonance.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (10) ◽  
pp. 33-41 ◽  
Author(s):  
BRIAN N. BROGDON

This investigation evaluates how higher reaction temperatures or oxidant reinforcement of caustic extraction affects chlorine dioxide consumption during elemental chlorine-free bleaching of North American hardwood pulps. Bleaching data from the published literature were used to develop statistical response surface models for chlorine dioxide delignification and brightening sequences for a variety of hardwood pulps. The effects of higher (EO) temperature and of peroxide reinforcement were estimated from observations reported in the literature. The addition of peroxide to an (EO) stage roughly displaces 0.6 to 1.2 kg chlorine dioxide per kilogram peroxide used in elemental chlorine-free (ECF) bleach sequences. Increasing the (EO) temperature by Δ20°C (e.g., 70°C to 90°C) lowers the overall chlorine dioxide demand by 0.4 to 1.5 kg. Unlike what is observed for ECF softwood bleaching, the presented findings suggest that hot oxidant-reinforced extraction stages result in somewhat higher bleaching costs when compared to milder alkaline extraction stages for hardwoods. The substitution of an (EOP) in place of (EO) resulted in small changes to the overall bleaching cost. The models employed in this study did not take into account pulp bleaching shrinkage (yield loss), to simplify the calculations.


2018 ◽  
Vol 42 (2) ◽  
pp. e12978
Author(s):  
Nur Cebi ◽  
Osman Sagdic ◽  
Abdulrahman Mohammed Basahel ◽  
Mohammed Abdullah Balubaid ◽  
Osman Taylan ◽  
...  

Author(s):  
Pavlina Mihaylova ◽  
Alessandro Pratellesi ◽  
Niccolò Baldanzini ◽  
Marco Pierini

Concept FE models of the vehicle structure are often used to optimize it in terms of static and dynamic stiffness, as they are parametric and computationally inexpensive. On the other hand they introduce modeling errors with respect to their detailed FE equivalents due to the simplifications made. Even worse, the link between the concept and the detailed FE model can be sometimes lost after optimization. The aim of this paper is to present and validate an alternative optimization approach that uses the detailed FE model of the vehicle body-in-white instead of its concept representation. Structural modifications of this model were applied in two different ways — by local joint modifications and by using mesh morphing techniques. The first choice was motivated by the strong influence of the structural joints on the global vehicle performance. For this type of modification the plate thicknesses of the most influent car body joints were changed. In the second case the overall car dimensions were modified. The drawback of using detailed FE models of the vehicle body is that they can be times bigger than their concept counterparts and can thus require considerably more time for structural analysis. To make the approach proposed in this work a feasible alternative for optimization in the concept phase response surface models were introduced. With them the global static and dynamic performance of the body-in-white was represented by means of approximating polynomials. Optimization on such mathematical models is fast, so the choice of the optimization algorithm is not limited only among local-search strategies. In the current study Genetic Algorithm was used to increase the chances for finding better design alternatives. Two different optimization problems were defined and solved. Their final solutions were presented and compared in terms of structural modifications and resulting responses. The approach in this paper can be successfully used in the concept phase as it is fast and reliable and at the same time it avoids the problems typical for concept models.


2010 ◽  
Vol 111 (2) ◽  
pp. 387-394 ◽  
Author(s):  
Ken B. Johnson ◽  
Noah D. Syroid ◽  
Dhanesh K. Gupta ◽  
Sandeep C. Manyam ◽  
Nathan L. Pace ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document