Engineering Criticality Assessments of Floating Offshore Platforms Based on Time Domain Structural Response Analysis

2021 ◽  
Author(s):  
Jeffrey O’Donnell ◽  
Johyun Kyoung ◽  
Sagar Samaria ◽  
Anil Sablok

Abstract This paper presents a time-domain S-N fatigue analysis and an approach to reliable and robust engineering criticality assessments to supplement or provide an alternative to S-N fatigue assessments of offshore platform structures based on time domain structural response analysis. It also provides recommendations for industry standards to improve guidance for structural integrity assessments of offshore platforms using fracture mechanics. Demand continues to grow in the offshore industry to attain value from captured operational data for a number of purposes, including the reduction of uncertainties in structural integrity assessments during design and over the operational lifetime of floating offshore platforms. Recent advances in time domain structural analysis technology demonstrate substantially more accurate assessments of non-linear platform loadings and responses with enhanced computational efficiency. The current S-N approach for fatigue design and integrity assessments calculates a fatigue damage factor that does not address how loading occurs over time (ABS, DNVGL-RP-C203). For the present study, engineering criticality assessments (ECAs) based on fracture mechanics theory (BS 7910) are applied utilizing time-domain loading information theory. The ECA returns the smallest initial flaws that can grow to a critical size during a design lifetime, which can serve as an indicator of acceptability during design, a technical basis for in-service inspection intervals and facilitates asset integrity and life extension assessments. Critical initial flaws are calculated using the Paris Law (BS 7910) and cumulative fatigue crack growth in two ways: with and without an integrated and consistent check for fracture instability. The results are compared with those from S-N fatigue analyses and recommendations are provided.

2021 ◽  
Author(s):  
Johyun Kyoung ◽  
Sagar Samaria ◽  
Jeffrey O’Donnell ◽  
Sudhakar Tallavajhula

Abstract Demand for life extension assessments of floating offshore platforms continues to grow worldwide. Conventional structural analysis methods have limited ability to accurately capture non-linear environmental loading, non-linear loading by the mooring and riser systems, and resulting higher order hull responses. The uncertainties are typically managed by the factors of safety applied in the structural analysis. Time domain structural analyses have long promised to improve analysis accuracy and reduce these uncertainties. This paper describes a comprehensive and practical time domain structural analysis methodology applied to a deep-water semi-submersible-type floating platform including results for structural strength and fatigue. In addition, the time domain structural analysis was extended for use in fracture mechanics and the assessment of notional weld flaws to facilitate specification of impactful non-destructive examination (NDE). Present time domain structural analysis methodology employs a response-based finite element analysis (FEA) conducted in the time domain. All external environmental loads and inertial forces are converted to a response-based stress-time history. Previously, conventional time domain structural analysis involves massive computation resources to resolve solutions at every time interval. Present methodology significantly improves computational efficiency to be practical in real-world problems. The improvement is achieved by decomposing the structural response into a set of multiple load components selected on the bases of function for hull motion response and environmental loadings. Structural response in time domain is directly obtained by synthesizing the load components. An actual time domain structural response is captured effectively and efficiently to simulate the strength and fatigue criterion for the structure with consistent environmental loads and hull responses. Utilizing the level of detail provided by the time domain structural analysis methodology, a fracture mechanics evaluation of notional initial flaws (engineering criticality assessments – ECAs) can be conducted providing meaningful technical basis for in-service NDE and life extension assessments. The procedures for fatigue crack growth and fracture documented in BS 7910 were employed to derive the smallest initial flaws (critical initial flaws) that may result in structural failure during a facility's lifetime. A comparison indicates that conventional structural analysis methods provide conservative results for both structural strength and fatigue damage calculations resulting from the linear assumption of environmental loads and hull responses. Present time domain structural analysis methodology provides an innovative, cutting-edge approach providing accuracy and fewer uncertainties, which can be pragmatically used during a typical project.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Yinsheng Li ◽  
Genshichiro Katsumata ◽  
Koichi Masaki ◽  
Shotaro Hayashi ◽  
Yu Itabashi ◽  
...  

Abstract Nowadays, it has been recognized that probabilistic fracture mechanics (PFM) is a promising methodology in structural integrity assessments of aged pressure boundary components of nuclear power plants, because it can rationally represent the influencing parameters in their inherent probabilistic distributions without over conservativeness. A PFM analysis code PFM analysis of structural components in aging light water reactor (PASCAL) has been developed by the Japan Atomic Energy Agency to evaluate the through-wall cracking frequencies of domestic reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock (PTS) transients. In addition, efforts have been made to strengthen the applicability of PASCAL to structural integrity assessments of domestic RPVs against nonductile fracture. A series of activities has been performed to verify the applicability of PASCAL. As a part of the verification activities, a working group was established with seven organizations from industry, universities, and institutes voluntarily participating as members. Through one-year activities, the applicability of PASCAL for structural integrity assessments of domestic RPVs was confirmed with great confidence. This paper presents the details of the verification activities of the working group, including the verification plan, approaches, and results.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 357
Author(s):  
Ji-Won Jin ◽  
Ki-Weon Kang

A vibration-based energy harvester (VEH) utilizes vibrations originated from various structures and specifically maximizes the displacement of its moving parts, using the resonance between the frequency of external vibration loads from the structure and the natural frequency of VEH to improve power production efficiency. This study presents the procedure to evaluate the structural performance and structural integrity of VEH utilized in a railway vehicle under frequency domain. First of all, a structural performance test was performed to identify the natural frequency and assess the structural response in frequency domain. Then, the static structural analysis was carried out using FE analysis to investigate the failure critical locations (FCLs) and effect of resonance. Finally, we conducted a frequency response analysis to identify the structural response and investigate the structural integrity in frequency domain. Based on these results, the authors assessed the structural performance and integrity of VEHs in two versions.


Author(s):  
R. S. Kulka ◽  
A. J. Price

Current methods for performing fracture mechanics assessments of thin-walled structures possess significant levels of conservatism, since they are often for general use with both thin-walled and thick-walled structures. In many industries, there are significant commercial drivers for reducing the amount of conservatism in these assessments. An enhanced understanding of the fracture behaviour of thin-walled structures in different situations may lead to the development of more appropriate structural integrity assessments. A review of the information pertaining to fracture mechanics analysis of thin-walled structures has been conducted. There are indications that improvements to the best practice methodology may be made, through improved tensile and toughness properties, consideration of limit loads, and the effect of residual stress distributions.


In implementing fracture mechanics based techniques for the design and life extension of structural components, it is necessary to establish the reliability with which various flaw sizes and types can be detected and characterized. Traditionally, this has been accomplished through extensive experimental demonstration programmes. This paper discusses present efforts to use model predictions to reduce the required amount of experimentation, and hence the cost, of such programmes. Formalisms whereby the extensive elastic-wave theoretical scattering effort of the last decade can be applied to practical problems are first reviewed. This is followed by several specific examples which have occurred in the nuclear and aerospace industries. The paper concludes with the identification of some important remaining theoretical problems and a discussion of possible strategies for future implementation of model calculations as tools in structural integrity programmes.


Author(s):  
Yinsheng Li ◽  
Genshichiro Katsumata ◽  
Koichi Masaki ◽  
Shotaro Hayashi ◽  
Yu Itabashi ◽  
...  

Probabilistic fracture mechanics (PFM) has been recognized as a promising methodology in structural integrity assessments of aged pressure boundary components of nuclear power plants because it can rationally represent the influencing parameters in their inherent probabilistic distributions without over conservativeness. In Japan, a PFM analysis code PASCAL (PFM Analysis of Structural Components in Aging LWR) has been developed by the Japan Atomic Energy Agency (JAEA) to evaluate the through-wall cracking frequencies of Japanese reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock (PTS) transients. In addition, efforts have been made to strengthen the applicability of PASCAL to structural integrity assessments of domestic RPVs against non-ductile fracture. On the other hand, unlike deterministic analysis codes, the verification of PFM analysis codes is not easy. A series of activities has been performed to verify the applicability of PASCAL. In this study, as a part of the verification activities, a working group was established in Japan, with seven organizations from industry, universities and institutes voluntarily participating as members. Through one year activities, the applicability of PASCAL for structural integrity assessments of domestic RPVs was confirmed with great confidence. This paper presents the details of the verification activities of the working group including the verification plan, approaches and results.


Author(s):  
Sagar Samaria ◽  
Bob Zhang ◽  
Sudhakar Tallavajhula ◽  
Johyun Kyoung

Abstract There is an ever-increasing demand for life extension of existing floating platforms worldwide. To adequately support these life extension projects there is a need to predict fatigue life of floating structures more accurately using a time domain approach. However, structural fatigue damage calculations using time domain response analysis can be very time consuming and challenging. An efficient and effective structural analysis methodology is developed to calculate accumulated fatigue damage for structural connections in a floating offshore platform using a response-based time domain routine. The methodology discussed in this paper can be applied to estimate fatigue life for hull critical connections in floaters such as Spars, TLPs or Semis as well as local structural supports such as mooring foundations and riser foundations. It also provides the option to generate stress histograms that can be utilized for Fracture Mechanics Evaluation (FME) of welds in structural connections. To calculate the accumulated fatigue damage at desired locations on a floating platform, the time domain analysis employs a Stress Intensification Factor (SIF) which correlates global loads with local stresses. In cases where a crack initiation is observed on a structural connection, fracture mechanics is used to evaluate the structural integrity of the weld. The FME requires fatigue stress range histograms as one of the input parameters. The stress ranges and cycles that are calculated and used to compute the fatigue damage using this methodology can be converted to stress range histograms which can then be used in the FME. The standard method to compute fatigue damage for a structural connection is by using an S-N fatigue approach under the assumption of linear cumulative damage (Palmgren-Miner rule). The methodology discussed in this paper uses a rainflow counting algorithm to effectively calculate the stress range and cycles which are then utilized for computing the fatigue damage. This methodology can be applied to green field projects involving a new design or for life of field studies of an existing platform requiring life extensions. It is particularly beneficial for brownfield projects where more accurate re-evaluation of fatigue life is needed. It can also provide Clients with reliable Engineering Criticality Assessments (ECA) and enable them to plan in-service inspections and repair work. As an application, a typical truss connection for a Spar platform is used to evaluate structural fatigue damage and generate the stress range histogram for FME. Also, a comparative study is performed for a typical truss connection fatigue damage result between the traditional approach used and the method discussed in this paper.


Author(s):  
Bo-Yi Chen ◽  
Chin-Cheng Huang ◽  
Hsoung-Wei Chou ◽  
Ru-Feng Liu ◽  
Hsien-Chou Lin

The Chinshan boiling water reactor (BWR) units 1 and 2, owned by Taiwan Power Company (TPC), started commercial operations in 1978 and 1979, respectively. The reactor pressure vessel (RPV) welds unavoidably degrade with the long time operation because of the fast-neutron fluence exposure. This effect should be considered in the life extension and license renewal application. Thus, the structural integrity of the axial and circumferential welds at the beltline region of reactor vessel must be evaluated carefully. The probabilistic fracture mechanics (PFM) analysis code: Fracture Analysis of Vessels – Oak Ridge (FAVOR), which has been verified by USNRC, is adopted in this work to calculate the conditional probability of initiation (CPI) and the conditional probability of failure (CPF) for the welds with 32 and 64 effective full power years (EFPY) operation, respectively. The Monte Carlo technique is involved in the simulation. This is the first time that the PFM technique is adopted for evaluating the risk of nuclear power plant components in Taiwan. Actual geometries, material properties, chemistry components, neutron fluence and operation conditions are used for the plant specific analyses. Moreover, the design basis transients/accidents described in the final safety analysis report are also taken into account. The computed results show that the failure probabilities of welds are less than 10−10 per year. Only the axial weld, W-1001-08, is found to have the probability of failure. The results of this work can be used to evaluate the structural integrity of the welds located at the RPV beltline region, and provide the aging analysis results for the life extension and the license renewal applications.


2018 ◽  
Vol 167 ◽  
pp. 02003
Author(s):  
Ki-Weon Kang ◽  
Ji-Won Jin

This study aims to assess the structural performance and structural integrity of vibration energy harvester (VEH). For this, the structural performance test were conducted to identify the natural frequency and structural response against frequency. And then, static structural analysis was performed using finite element analysis to investigate the failure critical locations (FCLs). Finally, we conducted the frequency response analysis in frequency domain to obtain the structural response with frequency and investigate the structural integrity of VEH. Using the above results, we assessed the structural performance and structural integrity of two types of VEHs.


Sign in / Sign up

Export Citation Format

Share Document