Air Quality and Climate Change: Hard Choices

Author(s):  
Heidi Ochsner ◽  
Ruth MacDougall ◽  
La Ronda Bowen ◽  
Allen Dusault ◽  
George Simons

This paper presents the results of a study conducted by Itron, Sustainable Conservation and Bowen & Associates for the Sacramento Municipal Utility District (SMUD) to investigate the status and costs of controls for reducing emissions of oxides of nitrogen (NOx) from small (100 to 300 kW) reciprocating engines operating on biogas from dairy digesters. During the course of the study, it became apparent that simultaneous environmental policies have created a fundamental “catch 22” situation for California’s biogas industry. On one hand, California air quality regulations require distributed generation (DG) technologies to achieve aggressive emission limits for control of oxides of nitrogen (NOx). At the same time, California’s Governor and Legislature have passed landmark legislation calling for GHG emissions to be reduced by twenty-five percent to 1990 levels by no later than 2020. A “catch 22” occurs because while DG technologies, particularly biogas fueled technologies, can play a key role in reducing GHG emissions, NOx control technologies needed to meet the required NOx levels have not matured to commercial readiness. This requires project developers to take substantial risks on both the financial and technical front without the likelihood of recouping their investments. The result creates an impasse that potentially deprives California not only of forward progress in reducing GHG emissions but forestalls significant interim NOx reductions that could otherwise be achieved. However, the situation highlights a problem that extends beyond California’s borders and the biogas industry: how to simultaneously achieve aggressive air quality targets while making significant reductions in greenhouse gas (GHG) emissions. This paper presents the findings of an investigation into proposed NOx emissions limits for biogas to energy applications and how those requirements interact with policies to reduce GHG emissions.

Author(s):  
M L Williams

The European regulations governing the emissions of gaseous pollutants from gasoline-engined motor vehicles is reviewed and discussed, including the so-called ‘Luxembourg Agreement’. The relationship between the regulation emission limits and those measured in practice from ‘as-received’ vehicles in use is also discussed. Having discussed the relationship between regulations and emissions, the further relationships between vehicle emissions and air quality are also discussed, giving particular attention to carbon monoxide, oxides of nitrogen and lead.


Author(s):  
Seungju Yoon ◽  
John F. Collins ◽  
Chandan Misra ◽  
Jorn D. Herner ◽  
Michael W. Carter ◽  
...  

Introduction of a selective catalytic reduction system for heavy-duty diesel trucks (HDDTs) has substantially reduced emissions of oxides of nitrogen (NOx). However, it was found that in-use NOx emissions measured from three 2010-technology HDDTs were higher than the certification standard and higher than the levels measured during engine certification. In-use NOx emissions from three HDDTs tested over chassis dynamometer cycles were 1.7 to 9 times higher than the NOx certification standard of 0.20 grams per brake horsepower-hour, and the emissions measured with a portable emissions measurement system over highway test routes were up to five times higher than the certification standard. Such high in-use NOx emissions occurred primarily during low-speed operations (25 mph or less). This is a concern in California because more than 50% of running-exhaust NOx emissions from HDDTs will occur during low-speed operations that constitute only 11% of total vehicle miles traveled by 2025. This substantial contribution of NOx emissions during low-speed operations should be addressed carefully in the process of developing regulations and strategies to improve air quality in California. For better understanding and control of high in-use NOx emissions, there is a strong need for investigation of NOx control technologies effective at low-speed operation, differences between engine testing and whole vehicle testing procedures, and the roles of both engine certification requirements and in-use compliance requirements in reducing real-world NOx emissions.


Author(s):  
Peter Chromec

Nitrogen Oxide (NOx) emissions of new Energy-from-Waste (EfW) facilities, especially in ozone non-attainment zones, are coming under increased scrutiny by permitting agencies in the US as new EfW projects are permitted. While the EPA national technology based limits for EfW plants under the New Source Performance Standards are still at 150 ppmdv at 7% O2, many permitting authorities are requiring substantially lower limits for new EfW plants in their states or air quality regions under EPA’s New Source Review/Prevention of Significant Deterioration air quality permitting program. This trend is directly related to the question, how the Lowest Achievable Emission Rate (LAER) and Best Available Control Technology (BACT) limits for NOx in EfW plants should be defined in ozone nonattainment and attainment areas respectively. Since lower NOx limits increase the cost of EfW as a sustainable waste management method, too stringent emission limits may have the adverse effect that more waste is landfilled due to the economic competition between these waste management methods which will actually lead to higher overall emissions and lower sustainability. Like other technology suppliers, Hitachi Zosen Inova (HZI, earlier AE&E Inova), a worldwide leader in EfW technology, has used various NOx control options. Apart from standard SNCR systems which can safely meet the EPA NSPS limits, there is DyNOR™, the advanced SNCR-based technology which can safely reach values below 100 ppmdv at 7% O2, and the SCR (Selective Catalytic Reduction) technology, which can reach values down to far below 50 ppmdv at 7% O2. However, once a certain emission limit is determined, the question is how this limit can be safely and continuously achieved with the lowest possible cost per ton of waste treated.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 563
Author(s):  
Kelsey Anderson ◽  
Philip A. Moore ◽  
Jerry Martin ◽  
Amanda J. Ashworth

Gaseous emissions from poultry litter causes production problems for producers as well as the environment, by contributing to climate change and reducing air quality. Novel methods of reducing ammonia (NH3) and greenhouse gas (GHG) emissions in poultry facilities are needed. As such, our research evaluated GHG emissions over a 42 d period. Three separate flocks of 1000 broilers were used for this study. The first flock was used only to produce litter needed for the experiment. The second and third flocks were allocated to 20 pens in a randomized block design with four replicated of five treatments. The management practices studied included an unamended control; a conventional practice of incorporating aluminum sulfate (referred to as alum) at 98 kg/100 m2); a novel litter amendment made from alum mud, bauxite, and sulfuric acid (alum mud litter amendment, AMLA) applied at different rates (49 and 98 kg/100 m2) and methods (surface applied or incorporated). Nitrous oxide emissions were low for all treatments in flocks 2 and 3 (0.40 and 0.37 mg m2 hr−1, respectively). The formation of caked litter (due to excessive moisture) during day 35 and 42 caused high variability in CH4 and CO2 emissions. Alum mud litter amendment and alum did not significantly affect GHGs emissions from litter, regardless of the amendment rate or application method. In fact, litter amendments such as alum and AMLA typically lower GHG emissions from poultry facilities by reducing ventilation requirements to maintain air quality in cooler months due to lower NH3 levels, resulting in less propane use and concomitant reductions in CO2 emissions.


2021 ◽  
Vol 3 (1) ◽  
pp. 19-30
Author(s):  
Hosea Patrick

The world is experiencing a rapid increase in the global average temperatures at an unprecedented level, primarily due to human activities. Global actors' and policymakers' inability to find an agreed upon course of action to curtail the looming effects of these increased temperatures is an issue of global environmental and human security concern. Solar geoengineering, also solar radiation modification (SRM), has been proposed in many quarters as an option to reducing global warming while finding other alternatives to GHG emissions. This paper provides a summary introduction to climate science on solar engineering for the social scientists and policymakers from the global south. The paper assesses the status, effects, and preparedness of developing economies, especially Africa, in adopting SRM policies and practices. It observes that the effects of SRM for Africa have not been adequately researched due to the dearth of research and experts on SRM, specifically for Africa. It concludes that the reliance of a significant proportion of developing societies on climate-sensitive livelihood options makes the implication of SRM a worthy consideration for research and policymakers.


2019 ◽  
Vol 12 (2) ◽  
Author(s):  
Agus Susanto

South Tangerang City Government set it Situ (small lake) Kedaung as one of the conservation program, because of 9 there were 4 of which have been lost or switching functions, and 3 endangered missing, one of them is Situ Kedaung. For it is necessary to study the level of sustainable conservation to utilization Situ Kedaung. This study aims to analyze the index and status sustainability of 5 (five) dimensions of sustainability, using the data step Multi-Dimensional Scaling (MDS), and the results are expressed in the form of index and status of sustainability. To determine the attributes that are sensitive and affect the index and status sustainability and influence of Laverage and Montecarlo analysis. As for the scenarios increase the sustainability of the future status is a prospective analysis. The analysis showed that the ecological dimensions of sustainability are at less status (37.32), the economic dimension is the less sustainable status (26.05), the social dimension is the less sustainable status (40.28), the dimensions of the technology is fair sustainable status (57.20), and institutional dimensions are less sustainable (26.91). The results of the analysis of all the dimensions of sustainability for situ Kedaung is included in the category or status less sustainable with index value of 36.65. Of the 37 attributes that were analyzed, there were 14 attributes that need to be addressed as it is sensitive affect. Based on a prospective analysis, there are 5 critical attributes that must be managed in order to maintain sustainability. These five attributes include: water pollution, eco-tourism, conservation, community income, and local regulatory agencies, hereinafter referred to as key attributes. To improve the status of sustainability in the future (over the medium and long term), there are three scenarios : (1) Conservative-Pessimistic (survive the conditions that exist while holding make shift repairs), (2) moderate- Optimistic (make improvements but not optimal) and (3) Progressive- Optimistic (make comprehensive and integrated improvements).


MAUSAM ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 111-118
Author(s):  
SUNIL KUMAR PESHIN ◽  
PRIYANKA SINHA ◽  
AMIT BISHT

Diwali is one of the major and most important festivals celebrated all over India which falls in the period late October to early November every year. It is associated with burning of firecrackers especially during the night of Diwali day that leads to degradation of air quality that lasts for a longer duration of time. Firecrackers on burning releases huge amount of trace gases such as NOx, CO, SO2 and O3 and huge amount of aerosols and particulate matter. The present study focuses on the influence of firecrackers  emissions on surface ozone(O3) ,oxides of nitrogen (NOx) and particulate matter (PM10 and PM2.5)concentration over the capital urban metropolis of India, New Delhi during Diwali festivity period from 2013-2015. A sharp increase is observed in surface ozone, NOx and particulate matter concentration during the Diwali day as compared to control day for 2013 to 2015 which is mainly attributed to burning of firecrackers. However the average concentration levels of the  gaseous pollutants and particulate matter (PM10 and PM2.5) on Diwali day exhibited a decline in 2015 and 2014 as compared to 2013 due to increase in  awareness campaigns among public and increased cost of firecrackers.  


2018 ◽  
Vol 11 (4) ◽  
pp. 1293-1320 ◽  
Author(s):  
Christina B. Zapata ◽  
Chris Yang ◽  
Sonia Yeh ◽  
Joan Ogden ◽  
Michael J. Kleeman

Abstract. The California Regional Multisector Air Quality Emissions (CA-REMARQUE) model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG) emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU) scenario and an 80 % GHG reduction (GHG-Step) scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors) that are consistent with the future GHG scenarios for the following economic sectors: (i) on-road, (ii) rail and off-road, (iii) marine and aviation, (iv) residential and commercial, (v) electricity generation, and (vi) biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors) increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG-Step scenario vs. the BAU scenario while corresponding primary PM0.1 emissions decrease by 36 %. Ultrafine particles (PM0.1) are an emerging pollutant of concern expected to impact public health in future scenarios. The complexity of this situation illustrates the need for realistic treatment of criteria pollutant emissions inventories linked to GHG emissions policies designed for fully developed countries and states with strict existing environmental regulations.


Sign in / Sign up

Export Citation Format

Share Document