scholarly journals Impact of Diwali firework emissions on air quality of New Delhi, India during 2013-2015

MAUSAM ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 111-118
Author(s):  
SUNIL KUMAR PESHIN ◽  
PRIYANKA SINHA ◽  
AMIT BISHT

Diwali is one of the major and most important festivals celebrated all over India which falls in the period late October to early November every year. It is associated with burning of firecrackers especially during the night of Diwali day that leads to degradation of air quality that lasts for a longer duration of time. Firecrackers on burning releases huge amount of trace gases such as NOx, CO, SO2 and O3 and huge amount of aerosols and particulate matter. The present study focuses on the influence of firecrackers  emissions on surface ozone(O3) ,oxides of nitrogen (NOx) and particulate matter (PM10 and PM2.5)concentration over the capital urban metropolis of India, New Delhi during Diwali festivity period from 2013-2015. A sharp increase is observed in surface ozone, NOx and particulate matter concentration during the Diwali day as compared to control day for 2013 to 2015 which is mainly attributed to burning of firecrackers. However the average concentration levels of the  gaseous pollutants and particulate matter (PM10 and PM2.5) on Diwali day exhibited a decline in 2015 and 2014 as compared to 2013 due to increase in  awareness campaigns among public and increased cost of firecrackers.  

2022 ◽  
Vol 9 ◽  
Author(s):  
Bhupendra Pratap Singh ◽  
Gaber E. Eldesoky ◽  
Pramod Kumar ◽  
Prakash Chandra ◽  
Md Ataul Islam ◽  
...  

Novel Coronavirus disease (COVID-19), after being identified in late December 2019 in Wuhan city of China, spread very fast and has affected all the countries in the world. The impact of lockdowns on particulate matter during the lockdown period needs attention to explore the correlation between anthropogenic and natural emissions. The current study has demonstrated the changes in fine particulate matter PM2.5, PM10 and their effect on air quality during the lockdown. The air quality before the lockdown was low in New Delhi (India) and Riyadh (Saudi Arabia), among major cities worldwide. The air quality of India is influenced by dust and sand from the desert and surrounding areas. Thus, the current study becomes important to analyse changes in the air quality of the Indian sub-continent as impacted by dust storms from long distances. The result indicated a significant reduction of PM2.5 and PM10 from 93.24 to 37.89 μg/m3 and from 176.55 to 98.87 μg/m3 during the lockdown period as compared to pre lockdown period, respectively. The study shows that average concentrations of PM10 and PM2.5 have declined by -44% and -59% during the lockdown period in Delhi. The average value of median PM10 was calculated at 33.71 μg/m3 for Riyadh, which was lower than that value for New Delhi during the same period. The values of PM10 were different for pre and during the lockdown periods in Riyadh, indicating the considerable influence on air quality, especially the concentration of PM10, from both the natural (sand and dust storms) and the anthropogenic sources during the lockdown periods. However, relatively smaller gains in the improvement of air quality in Riyadh were correlated to the imposition of milder lockdown and the predominance of natural factors over the anthropogenic factors there. The Air Quality Index (AQI) data for Delhi showed the air quality to be ‘satisfactory’ and in the green category during the lockdown period. This study attempts to better understand the impact of particulate matter on the short- and long-term air quality in Delhi during the lockdown. This study has the scope of being scaled up nationwide, and this might be helpful in formulation air pollution reduction and sustainable management policies in the future.


2021 ◽  
Author(s):  
Karri Saarnio ◽  
Mika Vestenius ◽  
Katriina Kyllönen

The National Reference Laboratory for Air Quality (NRL) ensures the high quality of air quality measurements in Finland by organising audits and intercomparison campaigns. In this project, the conformity of the particulate matter measurements was evaluated with a particular focus on the measurement used for calculating the average exposure index (AEI) of Finland. The representativity and applicability of the AEI measurements made at the Kallio station in Helsinki were evaluated. It was noticed that the results of the Kallio measurement represent well the average fine particle (PM2.5) concentrations and the yearly based trend of fine particles in Finland. In addition, the yearly average concentrations of fine particles have been smaller than the AEI limit value of 8.5 µg/m3, at all individual urban background stations in Finland since year 2015. The measurement results made with the PM monitor used for AEI measurement, i.e. TEOM 1405 analyser at the Kallio station, were compared to the results from the reference method that follows the standard SFS-EN 12341:2014. It was noticed that the uncertainty requirement of 25% was reached and therefore the quality of the measurement is sufficient to use it for the calculation of AEI. However, the fine particle concentrations were generally very low and therefore the requirements given in the standard SFS-EN 16450:2017 for an intercomparison against the reference method were not perfectly fulfilled. This report presents also results from intercomparison measurements made for automated continuous measurement systems (AMS). At the Virolahti station and at the Mäkelänkatu station in Helsinki, PM10 and PM2.5 measurements were compared. In Kuopio and in Lahti, intercomparison measurements were made for PM2.5 only. Based on the results from these intercomparisons, the calibration coefficients both for PM10 and PM2.5 were defined for the first time in Finland for a FIDAS 200 analyser that is a new PM monitor in the Finnish market. It was concluded that FIDAS 200 analysers can be used for the PM measurements in Finland when the calibration coefficients are applied for the data; however, one must note that the presented calibration coefficients do not fulfil the requirements given for the demonstration of equivalence (DoE). Nevertheless, these coefficients are recommended to be used until the official coefficients will be delivered from the next DoE campaign. Two AMS (SHARP 5030 and TEOM 1405) were compared to the reference method for the measurements of PM10 and PM2,5 in Virolahti and in Helsinki, respectively. It was revealed that the calibration coefficients based on the DoE in Kuopio (2014–2015) do not always fit ideally at different locations and seasons due to differences in the environmental characteristics of the measurement sites. Therefore, NRL recommends that DoE should be organised every five years and in between the DoE’s so called ongoing-intercomparison measurements should be carried out continuously. In the ongoing-intercomparison, suitability of the calibration coefficients from DoE will be verified in different locations with varying environmental characteristics. The ongoing-intercomparison campaigns should take place at one site from a half a year to one year and after that, the campaign should continue at a different location similarly. This would ensure that the influence of seasonal differences to the suitability of coefficients will be verified at each measurement site.


2021 ◽  
Author(s):  
Subhasmita Panda ◽  
Priyadatta Satpathy ◽  
Trutpi Das ◽  
Boopathy Ramasamy

The giant increase in COVID-19 infection across India forced the government to impose strict lockdown in order to curb the pandemic. Although the stringent restrictions crippled India’s economy and poor people’s livelihood, it significantly improved the air quality of most of the polluted cities of India and rejuvenated the atmosphere. Thus, the major objective of this study is to provide a comprehensive overview of lockdown on pollutants prevailing in the atmosphere. A prominent decline in primary pollutants such as Particulate matter (PM), Black carbon (BC), Oxides of nitrogen (NOx), Carbon monoxide (CO) is observed across the country. However, lockdown had a trifling impact on Sulphur dioxide (SO2) concentration over some parts of India due to the constant operation of coal-fired thermal plants as a part of essential service. Furthermore, the sudden decline in NOx concentration disturbed the complex atmospheric chemistry and lead to an enhancement of surface ozone (O3) (secondary pollutant) in many cities of India. Thus, lockdown emerged as a unique opportunity for the atmospheric researchers, policymakers as well as stakeholders to collect baseline data of pollutants and their major sources. This will help to set new targets of air quality standards and to develop various mitigation processes to combat air pollution.


Author(s):  
Badr H. Alharbi ◽  
Hatem A. Alhazmi ◽  
Zaid M. Aldhafeeri

This study investigated the concentrations of air pollutants (NO, NO2, NOx, SO2, CO, O3, PM10, and PM2.5) at three sites with different traffic loads (work, residential, and traffic sites) before, during, and after the COVID-19 lockdown. The main objective of this study was to evaluate the effects and associated potential pollution control implications of the lockdown on the quality of ambient air at three selected sites in the urban area of Riyadh City. The average concentrations of NO, NO2, NOx, and CO decreased during the lockdown period by 73%, 44%, 53%, and 32% at the work site; 222%, 85%, 100%, and 60% at the residential site; and 133%, 60%, 101%, and 103% at the traffic site relative to the pre-lockdown period, respectively. The average concentration of O3 increased by 6% at the work site, whereas the concentration of SO2 increased by 27% at the residential site and decreased by 6.5% at the work site. The changes in PM10 and PM2.5 varied and did not exhibit a clear pattern. The air quality index (AQI) results indicated that the contribution to “undesired” air quality by O3 was 35.29% of the lockdown period at the work site while contributions to undesired air quality by PM10 and PM2.5 were 75.6% and 100% at the work site, 94.5% and 100% at the residential site, and 96.7% and 100% at the traffic site, respectively. The findings of this study are useful for devising effective urban pollution abatement policies. Applying control measures comparable to the lockdown measures over one week will result in a decrease of approximately 19% and 15% in CO mean concentration and 25% and 18% in NO2 mean concentration at residential and traffic sites, respectively.


Author(s):  
Ira Setiawati ◽  
Rahyani Ermawati ◽  
Kitai Kang ◽  
Insoo Chang ◽  
Kihwan Hong ◽  
...  

The increasingly rapid industrial development has produced pollutants in the form of gases and particles polluting the atmosphere. One of them is the steel industry where the majority of the air pollutants produced is particulate matter. Monitoring the air quality of particulate matter needs to be done routinely to identify and control the effects of air pollution somewhere. The purpose of this study is to identify and analyze particulate matter (PM10 and PM2.5) in the steel industry area in Cilegon, Indonesia. Ambient particulate matter is sampling by low-volume Sequential Particulate Matter (PM) Sampler with flow rate 5-20 L/minute for 24 hours per day in 4 months from September 2018 to January 2019. The results of identification and analysis of PM10 and PM2.5 in the steel industry area, Cilegon, Indonesia showed concentrations that varied greatly depending on sampling location conditions, with an average concentration range of 89.38 - 141.13 µg/m3 for PM10 and 21.74 - 50.69 µg/m3 for PM2.5.


2017 ◽  
Author(s):  
Carlo Bozzetti ◽  
Imad El Haddad ◽  
Dalia Salameh ◽  
Kaspar Rudolf Daellenbach ◽  
Paola Fermo ◽  
...  

Abstract. We investigated the seasonal trends of OA sources affecting the air quality of Marseille (France) which is the largest harbor of the Mediterranean Sea. This was achieved by measurements of nebulized filter extracts using an aerosol mass spectrometer (offline-AMS). PM2.5 (particulate matter with an aerodynamic diameter


2017 ◽  
Author(s):  
Luke D. Schiferl ◽  
Colette L. Heald

Abstract. Ensuring global food security requires a comprehensive understanding of environmental pressures on food production, including the impacts of air quality. Surface ozone damages plants and decreases crop production; this effect has been extensively studied. In contrast, the presence of particulate matter (PM) in the atmosphere can be beneficial to crops given that enhanced light scattering leads to a more even and efficient distribution of photons which can outweigh total incoming radiation loss. This study quantifies the impacts of ozone and PM on the global production of maize, rice, and wheat in 2010 and 2050. We show that accounting for the growing season of these crops is an important factor in determining their air pollution exposure. We find that the effect of PM can offset much, if not all, of the reduction in yield associated with ozone damage. Assuming maximum sensitivity to PM, the current (2010) global net impact of air quality on crop production is positive (+6.0 %, +0.5 %, and +4.9 % for maize, wheat, and rice, respectively). Future emissions scenarios indicate that attempts to improve air quality can result in a net negative effect on crop production in areas dominated by the PM effect. However, we caution that the uncertainty in this assessment is large due to the uncertainty associated with crop response to changes in diffuse radiation; this highlights that more detailed physiological study of this response for common cultivars is crucial.


2019 ◽  
Vol 7 (1) ◽  
pp. 47-53
Author(s):  
Lalven tluanga ◽  
◽  
H. Lalramnghinglova

In recent years, Mizoram has made immense progress in various sectors and initiated developmental programmes for its economic growth. An important contributing factor to this development and growth is the transport connectivity projects. Although connectivity projects can boost economic growth, its negative effects cannot be neglected. In view of this, the present research studies the impacts of Champhai – Zokhawthar road construction on the air quality and noise quality of the region. This comparative study of the impact on the quality of air and noise pollution in the pre-construction phase and construction phase provide a clear-cut example of the negative impacts caused by road construction and provide a fresh outlook for formulation of improved management plans. Air quality assessment was carried out using High Volume Air Sampler and the following parameters were monitored – suspended particulate matter (SPM), respirable suspended particulate matter (RSPM), nitrogen dioxide (NO2) and sulphur dioxide (SO2). The results indicate that mean SPM concentration was increased by 22.82 µg/m3; RSPM concentration by 14.67 µg/m3; NO2 concentration by 4.08 µg/m3; and SO2 concentration was increased by 0.06 µg/m3 from the pre-construction phase to construction phase. Noise quality assessment was carried out at three sites – Zotlang, Melbuk and Zokhawthar by using Lutron SL-4001 Sound Level Meter and Leq, Lmax and Lmin were recorded and calculated. The mean noise level at Zotlang wasincreased by 8.72 dB (A) and at Melbuk the mean noise level was increased by 9.35 dB (A). However, at Zokhawthar, there was a decrease in mean noise level by 0.13 dB (A). From the present study, it is evident that road construction poses a threat to the air quality and noise quality of the study area and improved measuresneed to betaken to curb its negative impacts


2015 ◽  
Vol 7 (6) ◽  
pp. 1145
Author(s):  
Patricia Simone Palhana Moreira ◽  
Rivanildo Dallacort ◽  
Idilaine De Fatima Lima ◽  
Rafael Cesar Tieppo ◽  
Cristiano Santos

O objetivo do presente trabalho foi analisar as concentrações de material particulado presente na atmosfera de Tangará da Serra-MT, e correlacioná-los com as variáveis meteorológicas, informações de saúde e com o número de focos de queimada no Estado de Mato Grosso. Os dados de material particulado foram amostrados diariamente a cada 5 minutos, com auxilio do coletor DataRam4, no período de agosto de 2008 a julho de 2009. Os dados meteorológicos foram disponibilizados pelo Instituto Nacional de Meteorologia - INMET, o qual possui uma estação meteorológica instalada na Universidade do Estado de Mato Grosso – UNEMAT. A média de concentração do período foi de 30,1 ug.m-3. Os meses de agosto, setembro e outubro apresentaram concentrações mais altas de material particulado, nestes meses também ocorreram os maiores números de queimadas no Estado. Nos meses em que foram registrados os picos de concentração, houve dias em que os padrões de qualidade do ar foram ultrapassados. No mês de outubro, que foi o de maior concentração, as médias diárias ultrapassaram 150 ug.m-3 em três dias. As concentrações de material particulado (PM10) foram altas apenas em um período relativamente curto, de apenas três meses, nos demais meses as concentrações foram baixas, não ultrapassando os limites de qualidade do ar.  A B S T R A C T The aim of this work was to analyze the atmospheric particulate matter concentrations in Tangara da Serra MT, and correlate them with meteorological variables, health information and the number of fire spots in Mato Grosso State. The particulate matter data were sampled every five minutes daily with a DataRam4 collector, from August 2008 to July 2009. Meteorological data were acquired from the National Institute of Meteorology - INMET, which has a weather station at the Mato Grosso State University - UNEMAT. The average concentration for the period was 30.1 ug.m-3. The months of August, September and October showed higher concentrations of particulate matter, in these months also occurred the highest number of fire spots in the State. In the months that had the concentrations peak, there were days when the air quality standards were exceeded. In October, which had the highest concentration, the daily average exceeded 150 ug.m-3 in three days. The concentrations of particulate matter (PM10) were high, but only in a relatively short period of three months, in the remaining months the concentrations were low, not exceeding the limits of air quality. Keywords: Meteorological Variables, Fire Spots, Meteorology.  


2019 ◽  
Vol 11 (5) ◽  
pp. 1312 ◽  
Author(s):  
Chunyi Li ◽  
Yilan Huang ◽  
Huanhuan Guo ◽  
Gaojie Wu ◽  
Yifei Wang ◽  
...  

Particulate matter (PM) is an essential source of atmospheric pollution in metropolitan areas since it has adverse effects on human health. However, previous research suggested wetlands can remove particulate matter from the atmosphere to land surfaces. This study was conducted in the Hanshiqiao Wetland National Nature Reserve in Beijing during 2016. The concentrations of PM10 and PM2.5 on a wetland and bare land in the park, as well as metrological data, were collected during the whole year. Based on the observed data, removal efficiency of each land use type was calculated by empirical models and the relationships between concentrations and metrological factors were also analyzed. The results indicated that: (1) In general, the PM10 and PM2.5 concentrations on the bare land surface were higher than those on the wetland surface, in both of which the highest value appeared at night and evening, while the lowest value appeared near noon. In terms of season, the average concentration of PM10 was higher in winter (wetland: 137.48 μg·m−3; bare land: 164.75 μg·m−3) and spring (wetland: 205.18 μg·m−3; bare land: 244.85 μg·m−3) in general. The concentration of PM2.5 on the wetland surface showed the same pattern, while that on the bare land surface was higher in spring and summer. (2) Concentrations of PM10 and PM2.5 were significantly correlated with the relative humidity (p < 0.01) and inversely correlated with wind speed (p < 0.05). The relationship between PM10 and PM2.5 concentrations and temperature was more complicated—it showed a significantly negative correlation (p < 0.01) between them in winter and spring, however, the correlation was insignificant in autumn. In summer, only the correlation between PM10 concentration and temperature on the wetland surface was significant (p < 0.01). (3) The dry removal efficiency of PM10 was greater than that of PM2.5. The dry removal efficiencies of PM10 and PM2.5 followed the order of spring > winter > autumn > summer on the wetland. This study seeks to provide practical measures to improve air quality and facilitate sustainable development in Beijing.


Sign in / Sign up

Export Citation Format

Share Document