Effect of Inclination Angle of Splitter Plate on Flow Over a Circular Cylinder

Author(s):  
Li Zhang ◽  
Lin Ding

Two-dimensional unsteady laminar flow over a circular cylinder with an attached splitter plate was investigated numerically. To see the effect of the splitter plate length and inclination angle on the pressure distributions and vortex shedding, numerical simulations were done for moderate Reynolds numbers ranging from 100 to 500 in two different splitter plate lengths (1 and 2 diameters), and the angles between splitter plate and wake centerline was changed from 0 to 45 deg. Results indicate that the wake structure and length are dependent on the inclination angle of splitter plate. Near wake length is almost unchanged when θ>25 deg. On the other hand, circular cylinder’s drag coefficient is distinctly affected by the position of vortex. And significant local peaks of the RMS lift coefficient are obtained at θ=15 deg and 5 deg for L=1D and 2D respectively. The lift force is in one direction when the inclination angle is over a critical value. In addition, the non-dimensional Strouhal number representing the vortex shedding frequency characteristics varies as a function of the angle and has peak values at θ=20 and 5 deg for L=1D and 2D respectively. And the longer splitter plate causes more decrease in the Strouhal number for θ>15 deg.

Author(s):  
Minter Cheng

Fluid flow across a bluff body can induce a series alternating vortices in the downstream flow field. The vortex flow can produce adverse effects on many engineering applications. A number of studies have shown that the wake splitter plate is one of the means to stabilize the vortex formation process. However, most of the previous studies are confined to cylinders with attached splitter plates. Very few studies investigate the effects of the spacing between the cylinder and the splitter plate on the formation of wake vortices. In the present study, the effects of the splitter plate length as well as the gap distance between the splitter plate and the cylinder on the wake flow behind a cylinder have been studied experimentally for low Reynolds number of 400. Both circular and square cylinders are studied in this research. Four splitter plates with different length, 1 ≤ L/D ≤ 4, have been used and a range of cylinder and splitter plate gap distance, 0 < G/D < 6, have been studied. By using flow visualization technique and hot-film anemometer measurement, detailed measurements of the velocity distribution, the vortex shedding frequency, the wake width, and the wake formation length are carried out in order to get a clear understanding of the flow interference behavior. The experimental results indicate that splitter plates alter the vortex formation process in the wake causing a decrease in vortex shedding frequency. The Strouhal number decreases with increasing the splitter plate length as well as the gap distance between the cylinder and the splitter plate. It is shown that a jump in Strouhal number occurs at G/D of 3 to 6. The jump is splitter plate length dependent, and generally the gap distance at which jump takes place increases as the splitter plate length increases.


2004 ◽  
Vol 3 (1) ◽  
Author(s):  
R. L. Ferreira ◽  
E. D. R. Vieira

The flow around a circular cylinder has awaken the attention of different researchers since the historic Strouhal's work of 1878. Ever since, many experimental and numeric works have been carried out in order to determine the relationship between the vortex shedding frequency and the flow regime. Recently, a number of studies have been developed using several small modifications in circular cylinder. In this work a circular cylinder modified with a longitudinal concave notch, has been tested in order to determine the relationship between the non-dimensional vortex shedding frequency (Strouhal number) and the Reynolds number has been determined to Reynolds up to 600. Additionally a modified circular cylinder with a longitudinal slit also has been tested in order to determine the Strouhal-Reynolds relationship in several attack angle configurations. The experiments have been carried out in a vertical low turbulence hydrodynamic tunnel with 146x146x500 mm of test section operating in continuous mode. Flow visualization by direct liquid dye injection has been utilized in order to produce vortex images. These images have been captured in still chemical photography for different Reynolds numbers. A hot-film probe has been adequately positioned in the vortex wake to determine the vortex shedding frequency and consequently the Strouhal number.


2007 ◽  
Vol 23 (2) ◽  
pp. 107-116 ◽  
Author(s):  
J. K. Tu ◽  
J. J. Miau ◽  
Y. J. Wang ◽  
G. B. Lee ◽  
C. Lin

AbstractExperiments were made with 14 MEMS sensors situated along the span of a circular cylinder whose aspect ratio was 5. The signals of the MEMS sensors were sampled simultaneously as flow over the cylinder at Reynolds numbers of 104. The results of Wavelet analysis of the signals indicate that the percentage of time during which strong three-dimensionality of vortex shedding was detected is about 10%.As noted, strong three-dimensionality took place when the fluctuating amplitude of the signals was severely modulated and the vortex shedding frequency reduced appeared abnormally high or low. Further noted was that the addition of a splitter plate of 0.5 or one diameter in length behind the circular cylinder was not able to suppress the three-dimensionality of the flow.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ali Ahmed ◽  
Abdul Wahid ◽  
Raheela Manzoor ◽  
Noreen Nadeem ◽  
Naqib Ullah ◽  
...  

Numerical simulations are carried out to study the flow around two tandem square cylinders (SC) under the effect of spacing ratio(g/D) and splitter plate length (l/D) for a fixed Reynolds number (Re) = 100. The g/D is varied from 0 to 10 and l/D is varied from 0.5 to 10. The splitter plate length is found to have strong effect on vortex shedding and fluid forces. The maximum reduction in mean drag coefficient is observed at l/D = 8, that is 15% and 78% for upstream and downstream cylinders, respectively. The maximum reduction in root-mean-square value of lift coefficient is found at l/D = 10, that is 99%. The flow pattern at both of these points is steady flow. There is 100% vortex shedding suppression for l/D > 5. The observed flow patterns for flow past tandem cylinders without splitter plate are; single bluff body (SBB), steady flow (SF), quasi-steady flow (QSF), fully developed flow (FDF) and fully developed two-row vortex street flow (FDTRVS) regimes. SBB, QSF and SF regimes were observed in presence of splitter plate.


2003 ◽  
Vol 125 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Tsutomu Kawamura ◽  
Toshitsugu Nakao ◽  
Masanori Takahashi ◽  
Masaaki Hayashi ◽  
Kouichi Murayama ◽  
...  

Synchronized vibrations of a circular cylinder in a water cross flow at supercritical Reynolds numbers were measured. Turbulence intensities were varied to investigate the effect of the Strouhal number on the synchronization range. Self-excited vibration in the drag direction due to symmetrical vortex shedding began only when the Strouhal number was about 0.29, at a reduced velocity of 1.1. The reduced velocities at the beginning of lock-in vibrations caused by Karman vortex shedding decreased from 1.5 to 1.1 in the drag direction and from 2.7 to 2.2 in the lift direction, as the Strouhal number increased from 0.29 to 0.48.


1990 ◽  
Vol 112 (4) ◽  
pp. 386-392 ◽  
Author(s):  
H. Sakamoto ◽  
H. Haniu

Vortex shedding from spheres at Reynolds numbers from 3 × 102 to 4 × 104 in a uniform flow was investigated experimentally. Standard hot-wire technique were used to measure the vortex shedding frequency from spheres in a low-speed wind tunnel. Flow-visualization experiments were carried out in a water channel. Important results from the investigation were that (i) the variation of the Strouhal number St (=fD/U0, U0: freestream velocity, D: diameter of the sphere, f: vortex shedding frequency) with the Reynolds number (= U0D/v, v: kinematic viscosity) can be classified into four regions, (ii) the Reynolds number at which the hairpinshaped vortices begin to change from laminar to turbulent vortices so that the wake structure behind the sphere is not shown clearly when a Reynolds number of about 800 is reached, and (vi) at Reynolds numbers ranging from 8X102 to 1.5X104, the higher and lower frequency modes of the Strouhal number coexist.


Author(s):  
Farzan Kazemifar ◽  
Mehdi Molai ◽  
Bahar Firoozabadi ◽  
Goodarz Ahmadi

In this paper, reducing the Strouhal number of a circular cylinder is studied numerically. Two-dimensional numerical simulations of flow over a normal circular cylinder and various modified circular cylinders are carried out using FLUENT® soft ware. Two small blades are attached to a circular cylinder and the effects of variation of the blades length and the blade angle are studied numerically. The blade angle is chosen 2α = 0°, 30°, 90°, 120° and 150°. The blades length is chosen l/d = 0.125, 0.25, 0.375. Effects of blade angles and blade lengths were studied for both 2α = 0° and 150°. Results show that increasing in blade lengths decreases the Strouhal number. Moreover, as the blade angle was increased from zero to 90°, the percentage reduction in Strouhal number decreased; however, as the blade angle was further increased from 90° to 150°, the percentage reduction in Strouhal number increased. Although the modifications studied here decrease the vortex shedding frequency they make the vortices shed from the cylinder farther and stronger hence increasing the magnitude of the fluctuating forces.


Author(s):  
Eric D’herde ◽  
Laila Guessous

Flow over a cylinder is a fundamental fluid mechanics problem that involves a simple geometry, yet increasingly complex flow patterns as the Reynolds number is increased, most notably the development of a Karman vortex with a natural vortex shedding frequency when the Reynolds number exceeds a value of about 40. The goal of this ongoing study is to numerically investigate the effect of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the drag and lift forces over and vorticity dynamics behind a circular cylinder. This paper reports on initial results involving unsteady, laminar and incompressible flows over a circular cylinder. Sinusoidal free-stream pulsations with amplitudes Av varying between 25% and 75% of the mean free-stream velocity and frequencies varying between 0.25 and 5 times the natural shedding frequency fs were considered. Of particular interest to us is the interaction between the pulsating frequency and natural vortex shedding frequency and the resulting effects on drag. Interestingly, at frequencies close to the natural frequency, and to twice the natural frequency, a sudden drop in the mean value of the drag coefficient is observed. The first drop in the drag coefficient, i.e. near f = fs, is also accompanied by a change in the flow and vortex shedding patterns observed behind the cylinder. This change in vortex shedding pattern manifests itself as a departure from symmetrical shedding, and in a non-zero mean lift coefficient value. The second drop, i.e. near f = 2 fs, has similar characteristics, except that the mean lift coefficient remains at zero.


2011 ◽  
Vol 255-260 ◽  
pp. 942-946
Author(s):  
Hua Bai ◽  
Jia Wu Li

The hydrodynamic characteristics of a circular cylinder in two-dimensional unsteady uniform cross flow was simulated numerically by the laminar model with the reasonable mesh used the method of fluent. The focus of this numerical simulation was to research the characteristics of pressure distribution, drag coefficient and lift coefficient, and the Strouhal number was calculated at Reynolds-numbers value of 200. The results agree well with experimental data and other numerical results according to the reference. In order to study the control measures of the flow over a circular cylinder, the different baffles inserted at various locations downstream of the cylinder have been compared. The results shows that the vortex shedding of flow over a circular cylinder could be well controlled by place the baffle at a right position of the downstream medial axis of the cylinder, which could reduce drag and resist vibration.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Huseyin Akilli ◽  
Cuma Karakus ◽  
Atakan Akar ◽  
Besir Sahin ◽  
N. Filiz Tumen

In the present work, passive control of vortex shedding behind a circular cylinder by splitter plates of various lengths attached on the cylinder base is experimentally investigated in shallow water flow. Detailed measurements of instantaneous and time-averaged flow data of wake flow region at a Reynolds number of Re=6300 were obtained by particle image velocimetry technique. The length of the splitter plate was varied from L∕D=0.2 to L∕D=2.4 in order to see the effect of the splitter plate length on the flow characteristics. Instantaneous and time-averaged flow data clearly indicate that the length of the splitter plate has a substantial effect on the flow characteristics. The flow characteristics in the wake region of the circular cylinder sharply change up to the splitter plate length of L∕D=1.0. Above this plate length, small changes occur in the flow characteristics.


Sign in / Sign up

Export Citation Format

Share Document