A Natural Circulation Waste Heat Recovery System for High Temperature Gas-Cooled Reactor Used and/or Spent Fuel Tanks: Part II — Theoretical and Experimental Validation

Author(s):  
Franck M. Senda ◽  
Robert T. Dobson

Since the beginning of the twenty-first century, energy conservation has become a major feature of interest in most industrialised countries. The economics of saving energy versus wasting it has driven industrial activists to pay more attention to energy conservation. The implementation of energy conservation requires that all the possibilities of counteracting any potential loss of energy must be considered. This includes reducing heat losses from furnaces, thermal insulation, repair of steam leaks in power plants, heat loss from nuclear reactors, and all other practices that may be implemented rapidly and, preferably at low cost. Once this is achieved, further strategies have to be developed to stabilise short-term energy conservation in systems by implementing permanent solutions. Permanent energy conservation solutions are more expensive, but result in energy benefits over many years. These permanent solutions are referred to as Waste heat recovery systems (WHRSs). This paper presents potential application of WHRSs in high-temperature reactors technology. WHRSs have attracted the attention of many researchers over the past two decades, as using waste heat improves the system overall efficiency, notwithstanding the cost of extra plant. WHRSs require specially designed heat recovery equipment, and as such the used and/or spent HTR fuel tanks were considered by the way of example. An appropriately scaled system was designed, constructed and tested to demonstrate the functioning of such a cooling system first and validated the theoretical model that simulates the heat transfer process in the as-designed WHRS. It is a one-dimensional flow model assuming quasi-static and incompressible liquid and vapour flow its mathematical simulations as developed in Part I (Senda and Dobson, 2013). Two separate and independent cooling lines, using natural circulation flow in a particular form of heat pipes called thermosyphon loops were used to ensure that the fuel tank (FT) is cooled when the power conversion unit has to be switched off for maintenance, or if it fails.

Author(s):  
Franck M. Senda ◽  
Robert T. Dobson

This paper presents potential application of waste heat recovery (WHR) systems in high-temperature reactors technology. WHR systems have attracted the attention of many researchers over the past two decades, as using waste heat improves the system overall efficiency, notwithstanding the additional cost to upgrade the plant efficiency. WHR systems require specially designed heat recovery equipment, and as such the high-temperature gas-cooled reactor used and/or spent fuel tanks (SFTs) were considered by the way of example. An appropriately scaled system was designed and modelled to demonstrate the functioning of such a system, by the way of a cooling process of the used and/or SFT. Two separate and independent cooling lines, using a natural circulation flow in a particular form of heat pipes called thermosyphon loops were used to ensure that the fuel tank (FT) is cooled when the power conversion unit has to be switched off for maintenance, or if it fails. Assuming a one-dimensional flow model, a quasi-static and incompressible flow of both liquid and vapour, a theoretical model that simulates the heat transfer process in the as-designed WHR system is developed in this paper.


2019 ◽  
Vol 150 ◽  
pp. 200-209 ◽  
Author(s):  
Min Yan ◽  
Chunyuan Ma ◽  
Qiuwan Shen ◽  
Zhanlong Song ◽  
Jingcai Chang

Author(s):  
Antonio Agresta ◽  
Antonella Ingenito ◽  
Roberto Andriani ◽  
Fausto Gamma

Following the increasing interest of aero-naval industry to design and build systems that might provide fuel and energy savings, this study wants to point out the possibility to produce an increase in the power output from the prime mover propulsion systems of aircrafts. The complexity of using steam heat recovery systems, as well as the lower expected cycle efficiencies, temperature limitations, toxicity, material compatibilities, and/or costs of organic fluids in Rankine cycle power systems, precludes their consideration as a solution to power improvement for this application in turboprop engines. The power improvement system must also comply with the space constraints inherent with onboard power plants, as well as the interest to be economical with respect to the cost of the power recovery system compared to the fuel that can be saved per flight exercise. A waste heat recovery application of the CO2 supercritical cycle will culminate in the sizing of the major components.


2015 ◽  
Vol 36 (3) ◽  
pp. 25-48 ◽  
Author(s):  
Tomasz Kowalczyk ◽  
Paweł Ziółkowski ◽  
Janusz Badur

Abstract The conversion of a waste heat energy to electricity is now becoming one of the key points to improve the energy efficiency in a process engineering. However, large losses of a low-temperature thermal energy are also present in power engineering. One of such sources of waste heat in power plants are exhaust gases at the outlet of boilers. Through usage of a waste heat regeneration system it is possible to attain a heat rate of approximately 200 MWth, under about 90 °C, for a supercritical power block of 900 MWel fuelled by a lignite. In the article, we propose to use the waste heat to improve thermal efficiency of the Szewalski binary vapour cycle. The Szewalski binary vapour cycle provides steam as the working fluid in a high temperature part of the cycle, while another fluid – organic working fluid – as the working substance substituting conventional steam over the temperature range represented by the low pressure steam expansion. In order to define in detail the efficiency of energy conversion at various stages of the proposed cycle the exergy analysis was performed. The steam cycle for reference conditions, the Szewalski binary vapour cycle as well as the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery have been comprised.


Sign in / Sign up

Export Citation Format

Share Document