Multilevel Optimal Design of a Solar PV Array System Using Game Theory Approach

Author(s):  
Hoe-Gil Lee

Abstract This study proposes a method, grounded in a multilevel decision-making approach, for a stationary fixed-plate photovoltaic (PV) collector system. The system is comprised of three different subsystems: cell, panel, and array. We consider photovoltaic effects for output performance and an inverter system for distribution from the PV collector, including multiple conflicting objectives in individual subsystems in terms of cell conversion efficiency, power output, incident solar energy, seasonal characteristics, and costs. In terms of the performance in individual subsystems, the problem is reformulated into several smaller subproblems at each subsystem, and a coordination problem at the system level is compromised for optimization purposes. Multilevel optimization for the stationary fixed-plate PV collector system is achieved through the results of single-objective optimization that uses Genetic Algorithm programming (GA) to find global optimum solutions with decision-making under modified game theory. Thus, this work contributes to the optimal design of a stationary fixed-plate PV collector system for the best compromise solution based on specified requirements.

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 11624-11634
Author(s):  
Yingying Ma ◽  
Guoqiang Wang ◽  
Xiaoxuan Hu ◽  
He Luo ◽  
Xing Lei

Omega ◽  
2020 ◽  
Vol 94 ◽  
pp. 102050
Author(s):  
Francisco V. Mendonça ◽  
Margarida Catalão-Lopes ◽  
Rui Tato Marinho ◽  
José Rui Figueira

1991 ◽  
Vol 113 (3) ◽  
pp. 286-291 ◽  
Author(s):  
S. S. Rao ◽  
T. I. Freiheit

Many mechanical and structural design problems encountered in practice require solutions which balance several conflicting objectives. The vector, scalarization, and trade-off-curve methods have been developed to achieve multiobjective solutions. One of the best known methods for generating a compromise solution, based on the concept of Pareto minimum solution, is the cooperative game theory method since it uses a scalarized approach and has a numerical measure of compromise. However, game theory is hard to automate due to a two step optimization process involved. Hence, in this work, a modification to the game theory is introduced in which the two optimization steps are combined and an algorithm for its implementation is developed. The algorithm is tested on two numerical examples, including one dealing with the probabilistic design of an eighteen speed machine tool gear train. The probabilistic theory necessary for the design of the gear train is also introduced. The examples validate the modified game theory.


Author(s):  
Jitesh H. Panchal ◽  
Marco Gero Ferna´ndez ◽  
Janet K. Allen ◽  
Christiaan J. J. Paredis ◽  
Farrokh Mistree

Multi-functional design problems are characterized by strong coupling between design variables that are controlled by stakeholders from different disciplines. This coupling necessitates efficient modeling of interactions between multiple designers who want to achieve conflicting objectives but share control over design variables. Various game-theoretic protocols such as cooperative, non-cooperative, and leader/follower have been used to model interactions between designers. Non-cooperative game theory protocols are of particular interest for modeling cooperation in multi-functional design problems. These are the focus of this paper because they more closely reflect the level of information exchange possible in a distributed environment. Two strategies for solving such non-cooperative game theory problems are: a) passing Rational Reaction Sets (RRS) among designers and combining these to find points of intersection and b) exchanging single points in the design space iteratively until the solution converges to a single point. While the first strategy is computationally expensive because it requires each designer to consider all possible outcomes of decisions made by other designers, the second strategy may result in divergence of the solution. In order to overcome these problems, we present an interval-based focalization method for executing decentralized decision-making problems that are common in multi-functional design scenarios. The method involves propagating ranges of design variables and systematically eliminating infeasible portions of the shared design space. This stands in marked contrast to the successive consideration of single points, as emphasized in current multifunctional design methods. The key advantages of the proposed method are: a) targeted reduction of design freedom and b) non-divergence of solutions. The method is illustrated using two sample scenarios — solution of a decision problem with quadratic objectives and the design of multi-functional Linear Cellular Alloys (LCAs). Implications include use of the method to guide design space partitioning and control assignment.


Sign in / Sign up

Export Citation Format

Share Document