Dynamic Modeling and Simulation of Home Cooling System With Supercooling-Based Ice Energy Storage

Author(s):  
Yili Zhang ◽  
Sean Kissick ◽  
Hailei Wang

Abstract City’s electricity power grid is under heavy load during on-peak hours throughout summer cooling season. As the result, many utility companies implemented the time-of-use rate of electricity leading to high electricity cost for customers with significant cooling needs. On the other hand, the need for electricity and/or cooling decreases greatly at night, creating excess electricity capacity for further utilization. An innovative ice energy storage system is being developed leveraging a unique supercooling-based ice production process. During off-peak hours the proposed system stores the low-cost electric energy in the form of ice; during on-peak hours the system releases the stored energy to meet extensive home cooling needs. Thus, it can not only reduce energy and cost of cooling, but also increase the penetration of renewable energies (especially wind energy). In this paper, the working principles of the system is presented along with the modeling details of the overall system and several key components. The Simulink model takes in hourly temperature and peak/off peak electricity cost data to dynamically simulate the amount of energy required and associated cost for cooling an average home. Both energy consumption and cost for homes using the cooling system with ice energy storage in two US cities have been compared with those using conventional HVAC cooling system. According to the model, huge reduction in energy cost (up to 3X) can be achieved over six months of cooling season in regions with high peak electricity rates. While only moderate reduction on energy consumption is predicted for the ice energy storage system, further energy reduction potentials have been identified for future study.


Author(s):  
Yili Zhang ◽  
Sean Kissick ◽  
Hailei Wang

Abstract City’s electricity power grid is under heavy load during on-peak hours throughout summer cooling season. As the result, many utility companies implemented the time-of-use rate of electricity leading to high electricity cost for customers with significant cooling needs. On the other hand, the need for electricity and/or cooling decreases greatly at night, creating excess electricity capacity for further utilization. An innovative ice energy storage system is being developed leveraging a unique supercooling-based ice production process. During off-peak hours, the proposed system stores the low-cost electric energy in the form of ice; during on-peak hours, the system releases the stored energy to meet extensive home cooling needs. Thus, it can not only reduce energy and cost of cooling, but also increase the penetration of renewable energies (especially wind energy). In this paper, the working principles of the system is presented along with the modeling details of the overall system and several key components. The simulink model takes in hourly temperature and peak/off peak electricity cost data to dynamically simulate the amount of energy required and associated cost for cooling an average home. Both energy consumption and cost for homes using the cooling system with ice energy storage in two US cities have been compared with those using conventional HVAC cooling system. According to the model, huge reduction in energy cost (up to 3X) can be achieved over 6 months of cooling season in regions with high peak electricity rates. While only moderate reduction on energy consumption is predicted for the ice energy storage system, further energy reduction potentials have been identified for future study.



Author(s):  
James A. Kreibick ◽  
Marc Serra Bosch ◽  
Timothy P. Cleary ◽  
Brent Ballew

Often, available power from an in-vehicle energy storage system is governed by thermal limitations. Modeling of battery pack thermal response is crucial to managing its cooling system energy consumption and estimating available charge/discharge power for future locomotive tractive and regenerative effort. Active cooling through forced air flow was simulated using computer-aided design of the battery pack and its enclosure. Module scaled (series string of 54 12V batteries) testing and modeling of both air flow and temperature distribution was performed and validated for sealed lead acid carbon batteries. A controller area network and data logger collected temperature data from 218 sensors placed throughout a battery pack module during electrical loading for both switcher and over-the-road cycles while under various environmental thermal loadings. A blower on-off control algorithm was optimized to minimize energy consumption and implemented based on temperature array statistics.



2021 ◽  
Author(s):  
Mervette El Batouti ◽  
H. A. Fetouh

New ferroelectric perovskite sample: excellent dielectric, negligible dielectric loss for energy storage systems such as solar cells, solar ponds, and thermal collectors has been prepared at low cost using nanotechnology.



Author(s):  
Xiang Long Huang ◽  
Yunxiao Wang ◽  
Shulei Chou ◽  
Shi Xue Dou ◽  
Zhiming M. Wang

Room-temperature sodium-sulfur (RT Na-S) batteries constitute an extremely competitive electrochemical energy storage system, owing to their abundant natural resources, low cost, and outstanding energy density, which could potentially overcome the...



Proceedings ◽  
2019 ◽  
Vol 23 (1) ◽  
pp. 5
Author(s):  
Mohamad Cheayb ◽  
Sébastien Poncet ◽  
Mylène Marin-Gallego ◽  
Mohand Tazerout

Recently, major improvement on compressed air energy storage technology has been made by using the heat of compression for heating energy or using it to preheat the compressed air in the expansion phase and by demonstrating its ability to produce cooling energy. Thus, the trigenerative compressed air energy storage has been introduced. In this paper, we introduce a configuration of trigenerative compressed air energy storage system giving the preference to the electric energy production. The study then focuses on undertaking an optimization study via a parametric analysis considering the mutual effects of parameters. This analysis is applied to a micro-scale application including the existing technological aspects. The parametric study results applied on the hot temperature of the thermal energy storage indicate the possibility to find an optimal solution as a trade-off between system performances and other parameters reflecting its cost. On the contrary, the selection of the maximal storage pressure cannot be achieved by finding a compromise between energy density and system efficiency. A complete study of other design parameters will be addressed in a future publication.





Sign in / Sign up

Export Citation Format

Share Document