Thermalhydraulic Analysis of Steam Generators: Application of the Thirst Code to Vibration Analyses

2003 ◽  
Author(s):  
M. Yetisir ◽  
J. Pietralik ◽  
M. Mirzai

Flow-induced vibration concerns may be avoided by analysis, which requires the knowledge of flow patterns and the flow distribution in steam generators (SG). Typically, the distributions of flow velocity, fluid density, and, in the case of two-phase flow, distributions of steam quality and two-phase flow regime are needed. Generating this data is not straightforward because of the 3-dimensional nature of flow, complex steam generator geometry, and uncertainties associated with two-phase flow modelling. In this paper, the main features of THIRST, a thermalhydraulic code for recirculating SGs, are described. In addition, the effects of thermalhydraulic modelling and design features on velocity distributions and gap flow velocity needed for flow-induced vibration and fretting-wear calculations are discussed. These include an anisotropic resistance model in the U-bend region, design modifications in the U-bend region to reduce tube vibration, and the prediction of two-phase flow regimes.

Author(s):  
G. Ricciardi ◽  
M. J. Pettigrew ◽  
N. W. Mureithi

Two-phase flow in power plant steam generators can induce tube vibrations, which may cause fretting-wear and even fatigue cracks. It is therefore important to understand the relevant two-phase flow-induced vibration mechanisms. Fluidelastic instabilities in cross-flow are known to cause the most severe vibration response in the U-bend region of steam generators. This paper presents test results of the vibration of a normal triangular tube bundle subjected to air-water cross-flow. The test section presents 31 flexible tubes. The pitch-to-diameter ratio of the bundle is 1.5, and the tube diameter is 38 mm. Tubes were flexible in the lift direction. Seven tubes were instrumented with strain gauges to measure their displacements. A broad range of void fractions (from 10% to 90%) and fluid velocities (up to 13 m/s) were tested. Fluidelastic instabilities were observed for void fractions between 10% and 60%. Periodic fluid forces were also observed. The results are compared with those obtained with the rotated triangular tube bundle, showing that the normal triangular configuration is more stable than the rotated triangular configuration.


Author(s):  
W. G. Sim

Two-phase cross flow exists in many shell- and tube heat exchangers such as condensers, evaporators and nuclear steam generators. During the last two decades, research devoted to two-phase flow induced vibrations has increased, mainly driven by the nuclear industry. Flow-induced vibration excitation forces can cause excessive vibration which will result in long-term fretting-wear or fatigue. To avoid potential tube failures in heat exchangers, it is required for designer to have guidelines that incorporate flow-induced vibration excitation forces. The phenomenon of the vibration of tubes in two-phase flow is very complex and depends on factors which are nonexistent in single-phase flows. To understand the fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Pressure distributions generated by two-phase flow over tube surfaces yield more general information than the local velocity distribution. The pressure coefficient distribution obtained by experimental test has been evaluated.


Author(s):  
Niccolo Giannetti ◽  
Mark A.B. Redo ◽  
Kiyoshi Saito ◽  
Hiroaki Yoshimura

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Téguewindé Sawadogo ◽  
Njuki Mureithi

Having previously verified the quasi-steady model under two-phase flow laboratory conditions, the present work investigates the feasibility of practical application of the model to a prototypical steam generator (SG) tube subjected to a nonuniform two-phase flow. The SG tube vibration response and normal work-rate induced by tube-support interaction are computed for a range of flow conditions. Similar computations are performed using the Connors model as a reference case. In the quasi-steady model, the fluid forces are expressed in terms of the quasi-static drag and lift force coefficients and their derivatives. These forces have been measured in two-phase flow over a wide range of void fractions making it possible to model the effect of void fraction variation along the tube span. A full steam generator tube subjected to a nonuniform two-phase flow was considered in the simulations. The nonuniform flow distribution corresponds to that along a prototypical steam-generator tube based on thermal-hydraulic computations. Computation results show significant and important differences between the Connors model and the two-phase flow based quasi-steady model. While both models predict the occurrence of fluidelastic instability, the predicted pre-instability and post instability behavior is very different in the two models. The Connors model underestimates the flow-induced negative damping in the pre-instability regime and vastly overestimates it in the post instability velocity range. As a result the Connors model is found to underestimate the work-rate used in the fretting wear assessment at normal operating velocities, rendering the model potentially nonconservative under these practically important conditions. Above the critical velocity, this model largely overestimates the work-rate. The quasi-steady model on the other hand predicts a more moderately increasing work-rate with the flow velocity. The work-rates predicted by the model are found to be within the range of experimental results, giving further confidence to the predictive ability of the model. Finally, the two-phase flow based quasi-steady model shows that fluidelastic forces may reduce the effective tube damping in the pre-instability regime, leading to higher than expected work-rates at prototypical operating velocities.


1999 ◽  
Vol 54 (13-14) ◽  
pp. 2409-2419 ◽  
Author(s):  
Y. Jiang ◽  
M.R. Khadilkar ◽  
M.H. Al-Dahhan ◽  
M.P. Dudukovic

Author(s):  
Deepanjan Mitra ◽  
Vijay K. Dhir ◽  
Ivan Catton

In the past, fluid-elastic instability in two-phase flow has been largely investigated with air-water flow. In this work, new experiments are conducted in air-water cross-flow with a fully flexible 5 × 3 normal square array having pitch-to-diameter ratio of 1.4. The tubes have a diameter of 0.016 m and a length of 0.21 m. The vibrations are measured using strain gages installed on piano wires used to suspend the tubes. Experiments are carried out for void fractions from 0%–30%. A comparison of the results of the current tests with previous experiments conducted in air-water cross-flow shows that instability occurs earlier in a fully flexible array as compared to a flexible tube surrounded by rigid tubes in an array. An attempt is made to separate out the effects of structural parameters of three different experimental datasets by replotting the instability criterion by incorporating the instability constant K, in the reduced velocity parameter.


Sign in / Sign up

Export Citation Format

Share Document