Nonlinear Finite Element Analysis of a Threaded Pipe Connection

Author(s):  
Farzad Tasbihgoo ◽  
John P. Caffrey ◽  
Sami F. Masri

For the past several years, USC has been involved in a major research project to study the seismic mitigation measures of nonstructural components in hospitals funded by the Federal Emergency Management Agency (FEMA). It was determined that piping was the one of the most critical components affecting the functionality of a hospital following an earthquake. Consequently, a substantial effort was spent on quantifying the behavior of typical piping components. During the loading of the threaded joint, it was common to hear a loud popping sound, followed by a small water leak. It was assumed that the sound and leakage were due to the sliding of the mating pipe threads. To confirm this theory, and to provide a tool to help understand the failure mode(s) for a wide class of threaded fittings, a detailed nonlinear finite element model was constructed using MSC/NASTRAN, and correlated to the measured failures. In this paper, a simplified model is presented first to demonstrate the modeling procedure and to help understand the sliding phenomenon. Next, a symmetric half 3D model was generated for modeling the physical experiments. It is shown that the finite element analysis (FEA) of the threaded connections captures the dominant mechanism that was observed in the experimental tests.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Mehmet Emin Taşdelen ◽  
Mehmet Halidun Keleştemur ◽  
Ercan Şevkat

Braided sleeve composite shafts are produced and their torsional behavior is investigated. The braided sleeves are slid over an Al tube to create very strong and rigid tubular form shafts and they are in the form of 2/2 twill biaxial fiber fabric that has been woven into a continuous sleeve. Carbon and glass fibers braided sleeves are used for the fabrication of the composite shafts. VARTM (vacuum assisted resin transfer molding) and Vacuum Bagging are the two different types of manufacturing methods used in the study. Torsional behaviors of the shafts are investigated experimentally in terms of fabrication methods and various composite materials parameters such as fiber types, layer thickness, and ply angles. Comparing the two methods in terms of the torque forces and strain angles, the shafts producing entirely carbon fiber show the highest torque capacities; however, considering the cost and performance criteria, the hybrid shaft made up of carbon and glass fibers is the optimum solution for average demanded properties. Additionally, FE (finite element) model of the shafts was created and analyzed by using ANSYS workbench environment. Results of finite element analysis are compared with the values of twisting angle and torque obtained by experimental tests.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Linbo Zhu ◽  
Abdel-Hakim Bouzid ◽  
Jun Hong

Bolted flange joints are widely used to connect pressure vessels and piping equipment together and facilitate their disassembly. Initial tightening of their bolts is a delicate operation because it is extremely difficult to achieve the target load and uniformity due to elastic interaction. The risk of failure due to leakage and fatigue under service loading is consequently increased. This paper presents a study on the effect of elastic interaction that is present during the tightening of bolted flange joints using three-dimensional nonlinear finite-element modeling and experimentation. The nonlinear nonelastic behavior of the gasket is taken into account in the numerical simulation. The scatter in bolt preload produced during the tightening sequence is evaluated. Based on the elastic interaction coefficient method, the initial target tightening load in each bolt for every pass is determined by using the nonlinear finite-element model to obtain a uniform preload after the final tightening pass. The validity of the finite-element analysis (FEA) is supported by experimental tests conducted on a NPS 4 class 900 weld neck bolted flange joints using fiber and flexible graphite gaskets. This study provides guidance and enhances the safety and reliability of bolted flange joints by minimizing bolt load scatter due to elastic interaction.


Author(s):  
Ehsan Daneshkhah ◽  
Reza Jafari Nedoushan ◽  
Davoud Shahgholian ◽  
Nima Sina

Buckling is one of the common destructive phenomena, which occurs in composite cylinders subjected to external pressure. In this paper, different methods to optimize stacking sequence of these cylinders are investigated. A finite element model is proposed in order to predict critical buckling pressure and the results are validated with previous experimental data. Theoretical analysis based on NASA SP‐8007 solution and the simplified equation for cylinder buckling of ASME RD-1172 are presented and discussed. The results of theoretical and finite element analysis and experimental tests are compared for both glass and carbon epoxy cylinders. Using NASA and ASME formulations, optimal laminations of cylinders in order to maximize buckling pressure, are obtained by genetic algorithm method. Suggested laminations and the values of corresponding critical buckling pressure calculated by finite element analysis, are presented and compared in various states. Obtained results show that while predicted buckling loads of finite element analysis are reliable, NASA formulation can be used in a very cost-effective method to optimize the buckling problems.


2019 ◽  
Vol 255 ◽  
pp. 02015
Author(s):  
Siang Chuan Yeo ◽  
Meng Hee Lim ◽  
Hoe Cheng Eng

This paper is about predicting the noise and vibrations for railways project in Malaysia by using Finite Element Analysis method. In recent years, Malaysia is massively developing railways industry. This has created a great awareness in the public, regarding noise and vibration from railways trains during operations are generated from the rolling interaction of the wheels with the rails. Additional noise may be generated from brake squeals during braking at the stations and curved segments of the rail alignments. Over the years, it is relatively easy to measure the acoustic sound power of a train and to calculate noise levels. However, it would be advantageous to be able to reliably and efficiently predict the noise and vibration impact resulting from proposed railways projects. Comprehensive noise and vibration shall be predicted to determine noise and vibration levels along the entire track alignment to ensure that noise and vibration levels shall comply with Malaysia Department of Environment (DOE) approved limits. The result of analyses can be used to identify and to design noise and vibration mitigation measures for the entire railway project. Several methods have evolved to predict noise and vibration from various operational sources, but their suitability for prediction of noise and vibration from railways trains is not well known and has not yet been thoroughly tested. This study document finite element analysis undertaken for the noise and vibration aspects of the viaduct design of the railways track. Data and inputs for finite element model and analysis are including the aspect of “Geometry, atmospheric, ground effect, analysis type and boundary conditions”, as mentioned by Makarewicz (1998) and Lamancusa (2009). A comparison of finite element model and analysis will be conducted by adding the additional aspects of “Material properties and applied loads”, which to be determined as better accuracy of predicting noise and vibration from railways train.


Author(s):  
Linbo Zhu ◽  
Abdel-Hakim Bouzid ◽  
Jun Hong

Bolted flange joints are widely used to connect pressure vessels and piping equipment together and facilitate their disassembly. Initial tightening of their bolts is a delicate operation because it is extremely difficult to achieve the target load and uniformity due to elastic interaction. The risk of failure due to leakage and fatigue under service loading is consequently increased. This paper presents a study on the effect of elastic interaction that is present during the tightening of a bolted flange joints using three-dimensional nonlinear finite element modeling and experimentation. The nonlinear non-elastic behavior of the gasket is taken into account in the numerical simulation. The scatter in bolt preload produced during the tightening sequence is evaluated. Based on the elastic interaction coefficient method, the initial target tightening load in each bolt for every pass are determined by using the nonlinear finite element model to obtain a uniform preload after the final tightening pass. The validity of the FEA (Finite Element Analysis) is supported by experimental tests conducted on a NPS 4 class 900 weld neck bolted flange joints using fiber and flexible graphite gaskets. This study provides guidance and enhances the safety and reliability of bolted flange joints by minimizing bolt scatter due to elastic interaction.


2011 ◽  
Vol 243-249 ◽  
pp. 1321-1325
Author(s):  
Xue Feng Cai ◽  
Jin Ping Zhuang ◽  
Ming Bei Tuo

The characteristics of integral forced prformance for seel tubular high scaffold with couplers were introduced and deficiencies were pointed out in the paper. Integral forced prformance for steel tubular high scaffold with couplers was simulated by finite element software ABAQUS. Couplers joint was simulated with nolinear elastic spring element model. Eigenvalue buckling analysis was used to get the most stability capacity. The simulated result agrees well with previous experimental result.


2012 ◽  
Vol 226-228 ◽  
pp. 1199-1202
Author(s):  
Guo Hua Li ◽  
Cheng Zhi Qi ◽  
Jian Luo

In conventional analysis and design, the beam-column connections are divided into two categories: fully rigid joints and perfectly pinned joints. Actually, most beam-column connections exhibit flexibility. Idealized connections may diverge from the real reaction of structures. This article presents a hybrid finite-element model that consists of a beam element with two semi-rigid connections at the ends for studying the effect of the flexibility on the structures. Based on the theory of finite deformation, the first-order and the second-order stiffness matrix and the equilibrium equation of hybrid beam element were got. A nonlinear finite element analysis program was developed to analysis the steel frames with semi-rigid connections. At last, one-bay, two-story semi-rigid planar steel frame was analyzed using the program, and some conclusions about the effect of semi-rigid connections flexibility were obtained.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


Sign in / Sign up

Export Citation Format

Share Document