Robotics in the Nuclear Environment: Inspection and Repairs Inside the Primary Coolant System

Author(s):  
Marcel Tortolano ◽  
Jacques Guillet

EDF is the French national power generating utility. It has built and operates 58 pressurized water reactor (PWR) nuclear power plants on 19 sites. Of these, thirty-four are 900 megawatt units (the first of which, the Fessenheim NPP, came on line in 1977), twenty are 1300 MW units, and four are 1450 MW units, the latest of which, at the Civaux plant, came on line in 1998. The average age of these nuclear power plants is thus 20 years. They produce close to 85% of the power EDF generates in France. Renewal of the nuclear plants is under study, as are other means of power generation. For the moment, EDF is requesting approval to run its nuclear plants for up to 40 years. Moreover, it has started a major project on the lifetime of PWR reactors, the main objective of which is to extend the authorized lifetime to 60 years. Major requirements for maintaining the current performance of the French nuclear generating facility and reducing the cost per kWh generated include optimization of expenses and reduction of fuel costs. These factors enabled the cost per kWh to be reduced by 13% in 2001. One way to reduce costs involves optimization of maintenance programs and methods. However, increasing the operating lifetime of plants, and the concomitant ageing of equipment and materials, is likely to result in increasing maintenance requirements. For this reason it is important to establish new, more cost-effective maintenance methods in order to keep costs down. Some of these methods make use of robotics. They make it possible for work to be carried out from the inside of circuits, for inspections and even for repair if defects are detected. The results presented here are those of work carried out by the EDF R&D division on behalf of the Nuclear Power Plant Operations (NPPO) division.

2020 ◽  
Vol 12 (12) ◽  
pp. 5149
Author(s):  
Ga Hyun Chun ◽  
Jin-ho Park ◽  
Jae Hak Cheong

Although the generation of large components from nuclear power plants is expected to gradually increase in the future, comprehensive studies on the radiological risks of the predisposal management of large components have been rarely reported in open literature. With a view to generalizing the assessment framework for the radiological risks of the processing and transport of a representative large component—a steam generator—12 scenarios were modeled in this study based on past experiences and practices. In addition, the general pathway dose factors normalized to the unit activity concentration of radionuclides for processing and transportation were derived. Using the general pathway dose factors, as derived using the approach established in this study, a specific assessment was conducted for steam generators from a pressurized water reactor (PWR) or a pressurized heavy water reactor (PHWR) in Korea. In order to demonstrate the applicability of the developed approach, radiation doses reported from actual experiences and studies are compared to the calculated values in this study. The applicability of special arrangement transportation of steam generators assumed in this study is evaluated in accordance with international guidance. The generalized approach to assessing the radiation doses can be used to support optimizing the predisposal management of large components in terms of radiological risk.


2020 ◽  
Vol 20 (2) ◽  
pp. 127-132
Author(s):  
Namjin Cho ◽  
Dongsu Im ◽  
Jungdon Kwon ◽  
Teayeon Cho ◽  
Junglim Lee

Nuclear power plants store and use flammable gases and liquids and consequently risk explosions. Therefore, nuclear plants employ explosion-proof equipment; however, this equipment is not always sufficiently maintained. This lack of maintenance can affect the safety-related equipment intended to shut down the reactor, because the explosion-proof equipment itself can act as an ignition source. Radio-frequency identification (RFID) technology should be explored as a tool to improve both the convenience and efficiency of maintenance. We analyzed and compared explosion-proof RFID technology that can be used in nuclear power plants.


2018 ◽  
Vol 4 (2) ◽  
pp. 119-125
Author(s):  
Vadim Naumov ◽  
Sergey Gusak ◽  
Andrey Naumov

The purpose of the present study is the investigation of mass composition of long-lived radionuclides accumulated in the fuel cycle of small nuclear power plants (SNPP) as well as long-lived radioactivity of spent fuel of such reactors. Analysis was performed of the published data on the projects of SNPP with pressurized water-cooled reactors (LWR) and reactors cooled with Pb-Bi eutectics (SVBR). Information was obtained on the parameters of fuel cycle, design and materials of reactor cores, thermodynamic characteristics of coolants of the primary cooling circuit for reactor facilities of different types. Mathematical models of fuel cycles of the cores of reactors of ABV, KLT-40S, RITM-200M, UNITERM, SVBR-10 and SVBR-100 types were developed. The KRATER software was applied for mathematical modeling of the fuel cycles where spatial-energy distribution of neutron flux density is determined within multi-group diffusion approximation and heterogeneity of reactor cores is taken into account using albedo method within the reactor cell model. Calculation studies of kinetics of burnup of isotopes in the initial fuel load (235U, 238U) and accumulation of long-lived fission products (85Kr, 90Sr, 137Cs, 151Sm) and actinoids (238,239,240,241,242Pu, 236U, 237Np, 241Am, 244Cm) in the cores of the examined SNPP reactor facilities were performed. The obtained information allowed estimating radiation characteristics of irradiated nuclear fuel and implementing comparison of long-lived radioactivity of spent reactor fuel of the SNPPs under study and of their prototypes (nuclear propulsion reactors). The comparison performed allowed formulating the conclusion on the possibility in principle (from the viewpoint of radiation safety) of application of SNF handling technology used in prototype reactors in the transportation and technological process layouts of handling SNF of SNPP reactors.


2006 ◽  
Vol 321-323 ◽  
pp. 441-444
Author(s):  
Heung Seop Eom ◽  
Sa Hoe Lim ◽  
Jae Hee Kim ◽  
Young H. Kim ◽  
Hak Joon Kim ◽  
...  

This study was aimed at developing an effective method and a system for on-line health monitoring of pipes in nuclear power plants by using ultrasonic guided waves. For this purpose we developed a multi-channel ultrasonic guided wave system for a long-range inspection of pipes and a few techniques which can effectively find defects in pipes. To validate the developed system we performed a series of experiments and analyzed the results.


Sign in / Sign up

Export Citation Format

Share Document