Applications of Capacity Spectrum Method for Buildings With Metallic Yielding Dampers

Author(s):  
Bo-Jen Chen ◽  
C. S. Tsai ◽  
L. L. Chung ◽  
Tsu-Cheng Chiang

The 921 Chi-Chi Earthquake was one of the most destructive earthquakes in Taiwan in the twentieth century. The earthquake caused severe damage or collapse to the residential and public structures. It is a sensible choice to utilize the metallic yielding dampers for retrofitting damaged structures and to enhance earthquake-resistant capacity of new structures. In this paper, in order to facilitate the designs of the metallic yielding dampers, an improved nonlinear static analysis iteration procedure based on the capacity spectrum method for buildings with metallic yielding dampers has been proposed. The numerical results of the buildings with the metallic yielding dampers through the nonlinear static analysis iteration procedure and the nonlinear dynamic analysis have been obtained, compared and verified in this study. Moreover, it is also illustrated that the proposed nonlinear static analysis iteration procedure based on the capacity spectrum method for structures with metallic yielding dampers can fairly predict the seismic responses of the buildings with metallic yielding dampers during the earthquakes.

2013 ◽  
Vol 29 (4) ◽  
pp. 1459-1476 ◽  
Author(s):  
Rui Pinho ◽  
Mário Marques ◽  
Ricardo Monteiro ◽  
Chiara Casarotti ◽  
Raimundo Delgado

In recent years a number of nonlinear static procedures (NSPs) have been developed and proposed. Such pushover-based seismic assessment procedures are relatively straightforward to employ and are generally chosen over nonlinear dynamic analysis, especially within the realm of design office application. Parametric comparisons between the different NSPs available, however, are still somewhat sparse. In this work, five commonly employed NSPs (the N2 method, capacity spectrum method, modal pushover analysis, adaptive modal combination procedure, and the adaptive capacity spectrum method) are applied in the assessment of 16 frames subjected to a large number of input motions with a view to assess the accuracy level of such approaches through comparison with nonlinear dynamic analysis results. The evaluation shows that all the NSPs are able to accurately predict displacements and to produce reasonable estimates for other response parameters, with limited dispersion. Even though no single NSP tested led to consistently superior results, modal pushover analysis and the adaptive capacity spectrum method seemed to perform slightly better.


2016 ◽  
Vol 7 (4) ◽  
pp. 518-546
Author(s):  
Milan Bandyopadhyay ◽  
Atul Krishna Banik

Progressive collapse studies of both unbraced and braced semi-rigid jointed steel frames have been carried out to evaluate the contribution of bracings in improving progressive collapse resistance potential. Numerical models of 10-story frames with different types of semi-rigid connections have been developed using SAP2000. Progressive collapse potential of semi-rigid frames is first investigated without bracings. Bracings are then included in a systematic manner, and response of the braced frame is compared with that of unbraced frame to evaluate the contribution of bracings. Two different arrangements of bracings, that is, bay-wise and floor-wise arrangements, are considered to find out a preferred arrangement of bracings. Parametric studies include eight column removal conditions at center and corner locations of different floors. Development of catenary action has also been considered as it gives additional resistance, especially to braced frame. Apart from nonlinear static analysis, effects of bracings are evaluated also through nonlinear dynamic analysis and the responses of the frames in nonlinear dynamic analysis are compared with those of nonlinear static analysis. From the study, it is found that provision of bracings significantly improves the progressive collapse resistance potential of the semi-rigid frames under different column removal conditions. Floor-wise arrangement of bracings is much effective as compared to bay-wise arrangement.


2000 ◽  
Vol 16 (1) ◽  
pp. 241-261 ◽  
Author(s):  
Craig D. Comartin ◽  
Richard W. Niewiarowski ◽  
Sigmund A. Freeman ◽  
Fred M. Turner

The Applied Technology Council (ATC), with funding from the California Seismic Safety Commission developed the document, Seismic Evaluation and Retrofit of Concrete Buildings, commonly referred to as ATC 40. This two-volume, 612-page report provides a recommended procedure for the seismic evaluation and retrofit of concrete buildings. Although the focus is specifically on concrete buildings, the document provides information on emerging techniques applicable to most building types. This paper provides an introduction and overview of the document. The conceptual basis of the procedures is performance-based design using nonlinear static structural analysis. The ATC 40 document comprises a practical guide to the entire evaluation and retrofit process. Topics include performance objectives, seismic hazard, determination of deficiencies, retrofit strategies, quality assurance procedures, nonlinear static analysis using the capacity spectrum method, modeling recommendations, foundation effects, and response limits.


Author(s):  
B. Asgarian ◽  
A. Raziei

Jacket Type Offshore Platforms show nonlinear behaviors under strong ground motions result from nonlinear behaviors of soil, pile and jacket members. Nonlinear behavior study isn’t carried out accurately unless an accurate and suitable analytical method is selected. The main focus of this paper is the soil-pile-structure interaction analysis of the jacket type offshore platforms subjected to strong ground motion. A nonlinear dynamic analysis shows a true response if a logical model and an accurate theory are selected. In addition to nonlinear dynamic analysis, nonlinear static analysis is also carried out in this paper and results of the static nonlinear and dynamic nonlinear analyses have been compared. It was concluded that nonlinear static analysis can be used under some conditions instead of nonlinear dynamic analysis.


2018 ◽  
Vol 162 ◽  
pp. 04019 ◽  
Author(s):  
Sardasht Sardar ◽  
Ako Hama

Numerous recent studies have assessed the effect of P-Delta on the structures. This paper investigates the effect of P-Delta in seismic response of structures with different heights. For indicating the effect of P-Delta, nonlinear static analysis (pushover analysis) and nonlinear dynamic analysis (Time history analysis) were conducted by using finite element software. The results showing that the P-Delta has a significant impact on the structural behavior mainly on the peak amplitude of building when the height of the structures increased. In addition, comparison has been made between concrete and steel structure.


2017 ◽  
Vol 755 ◽  
pp. 170-180
Author(s):  
Natalino Gattesco ◽  
Ingrid Boem

A method for a simplified modeling of post-and-beam timber buildings braced with nailed shear walls, useful for seismic design purposes, is presented and discussed in the paper. This strategy is based on the schematization of the vertical diaphragms through equivalent diagonal springs with elastic-plastic behavior and allows the assessment of the resisting ground acceleration by performing nonlinear static analysis; the Capacity Spectrum method based on equivalent viscous damping was applied. This nonlinear procedure constitutes a reliable and simple alternative to the linear static analysis using the behavior factor q. The procedures to determine the characteristics of the equivalent elements (stiffness and load-carrying capacity) are based on analytical evaluations, starting from the actual characteristic of shear walls. A comparison between the results of numerical simulation based of more refined and complex models, previously presented by the authors, and this time-reducing, simplified analysis proved the good reliability of the method.


Sign in / Sign up

Export Citation Format

Share Document