A New European Commission Initiative on Optimisation of Maintenance in Nuclear Power Plants

Author(s):  
R. Ahlstrand ◽  
M. Bie`th ◽  
H. Over ◽  
P. Pla ◽  
V. Ranguelova ◽  
...  

The European Commission has recently launched a new initiative dedicated to Nuclear Safety in Central and Eastern Europe called after “Safety of Eastern European Type Nuclear Facilities” (SENUF). SENUF contributes to bring together all stakeholders of the nuclear safety programs for the Technical Assistance to the Commonwealth of Independent States (TACIS) and the Poland Hungary Aid for Reconstruction of the Economy (PHARE): beneficiaries, end users, Eastern and Western nuclear industries, and thus, to favour fruitful technical exchanges and feedback of experience. At present, the main focus of SENUF is the nuclear power plant maintenance as a substantial element of plant operational safety as well as life management. A dedicated Working Group has been established on plant maintenance. 10 members have joined in the starting period. After a thematic introduction the paper discusses the maintenance optimisation general aspects and current activities in the CIS and CEEC, the paper presents SENUF and reports about the first activities developed within the working group One of its major tasks in 2004 was to prepare a status report on advanced strategies to optimise maintenance. Optimisation projects have an interface with the plant’s overall life management program. Today, almost all plants belonging to SENUF members have an explicit policy to extend their service life. Thus, component ageing management, modernisation and refurbishment actions became much more important. Preliminary results of the extended inquiry are already available which show a rather homogeneous propagation of techniques and methods in general. A web-enabled database has been developed to provide maintenance managers and engineers with adequate information on “Advanced and Special Equipment, Tools, Materials and Processes” in order to help them selecting the most appropriate and cost efficient solution for their maintenance needs. Information about the existence, the main parameters of such equipment and the experience of their usage that can be valuable for others facing similar problems, will be shared through easy access by members. Currently, the activity is starting to develop into the area of Reliability-Centred and Risk-Informed Maintenance, taking benefit from cooperation with the IAEA. Further extension of the memberships is expected in the near future.

Author(s):  
M. Bie`th ◽  
R. Ahlstrand ◽  
C. Rieg ◽  
P. Trampus

The European Union’ TACIS programme was established for the New Independent States since 1991. One priority for TACIS funding is nuclear safety. The European Commission has made available a total of € 944 million for nuclear safety programmes covering the period 1991–2003. The TACIS nuclear safety programme is devoted to the improvement of the safety of Soviet designed nuclear installations in providing technology and safety culture transfer. The Joint Research Center (JRC) of the European Commission is carrying out works in the following areas: • On-Site Assistance for TACIS Nuclear Power Plants; • Design Safety and Dissemination of TACIS results; • Reactor Pressure Vessel Embrittlement for VVER in Russia and Ukraine; • Regulatory Assistance; • Industrial Waste Management and Nuclear Safeguards. This paper gives an overview of the Scientific and Technical support that JRC is providing for the programming and the implementation of the TACIS nuclear safety programmes. In particular, two new projects are being implemented to get an extensive understanding of the VVER reactor pressure vessel embritttlement and integrity assessment.


Author(s):  
Darius Ancius ◽  
Rimantas Krenevicius ◽  
Saulius Kutas ◽  
Michel Chouha

The aim of the paper is to present the Lithuanian legal framework regarding the nuclear safety in Decommissioning and Waste Management, and the progress in the Decommissioning Programme of the unit 1 of Ignalina Nuclear Power Plant (INPP). INPP is the only nuclear plant in Lithuania. It comprises two RBMK-1500 reactors. After Lithuania has restored its independence, responsibility for Ignalina NPP was transferred to the Republic of Lithuania. To ensure the control of the Nuclear Safety in Lithuania, The State Nuclear Power Safety Inspectorate (VATESI) was created on 18 October 1991, by a resolution of the Lithuanian Government. Significant work has been performed over the last decade, aiming at upgrading the safety level of the Ignalina NPP with reference to the International standards. On 5 October 1999 the Seimas (Parliament) adopted the National Energy Strategy: • It has been decided that unit 1 of Ignalina NPP will be closed down before 2005, • The conditions and precise final date of the decommissioning of Unit 2 will be stated in the updated National Energy strategy in 2004. On 20–21 June 2000, the International Donors’ Conference for the Decommissioning of Ignalina NPP took place in Vilnius. More than 200 Millions Euro were pledged of which 165 M€ funded directly from the European Union’s budget, as financial support to the Decommissioning projects. The Decommissioning Program encompasses legal, organizational, financial and technical means including the social and economical impacts in the region of Ignalina. The Program is financed from International Support Fund, State budget, National Decommissioning Fund of Ignalina NPP and other funds. Decommissioning of Ignalina NPP is subject to VATESI license according to the Law on Nuclear Energy. The Government established the licensing procedure in the so-called “Procedure for licensing of Nuclear Activities”; and the document “General Requirements for Decommissioning of the Ignalina NPP” has been issued by VATESI. A very important issue is the technical support to VATESI and the Lithuanian TSO’s (Technical Support Organisations) in their activities within the licensing process related to the Decommissioning of INPP. This includes regulatory assistance in the preparation of decommissioning and radioactive waste management regulatory documents, and technical assistance in the review of the safety case presented by the operator. The Institute for Radioprotection and Nuclear Safety (IRSN, France) and the French Nuclear Safety Authority (DSIN) as well as Swedish International Project (SIP) are providing their support to VATESI in these areas.


2021 ◽  
Author(s):  
Le Li ◽  
Zhihui Zhang ◽  
Chao Gao ◽  
Fei Zhou ◽  
Guangqiang Ma

Abstract With the development of digital instrument and control technology for nuclear power plants in recent decades, communication networks have become an important part of safety digital control systems, which takes charge in data exchange between the various sub-systems, and extremely impact on the reliability and safety of the entire I&C system. Traditional communication systems where some special features, such as reliability, safety, real-time, certainty, and independence are not strictly required are various illustrated. However, how to implement a communication system in a safety I&C system is rarely stated in current research. In this research, a reliable safety communication system applied in nuclear power plants is designed and analyzed. The five key characteristics of nuclear safety communication networks are explained, followed by explanation of how to achieve these characteristics. The analysis and verification of the designed system are also stated in this paper, which contributes to proving that the designed nuclear safety communication system could applied in the nuclear power plants.


Author(s):  
Lei Wan ◽  
Guiyong Li ◽  
Min Rui ◽  
Yongkang Liu ◽  
Jue Yang

A floating nuclear power plant (FNPP) with small modular reactor (SMR) is a combination of a civilian nuclear infrastructure and an offshore installation, which is defined as a floating nuclear facility. The article draws the lessons from studying of the engineer combination like Floating Production Storage and Offloading (FPSO) under the regulation of several government departments. It puts forward recommendations for license application and government regulation as follows in consideration with current license application for nuclear power plant and ship survey. A FNPP shall follow the requirements of construction, fueling and operation for civil nuclear installation combined with ship survey. Application is submitted to nuclear safety regulator for construction permit, while the design drawings shall be submitted to department of ship survey which checks the drawings whether meet the requirements of ship survey, considering some nuclear safety needs. The result of ship survey shall be represented in the safety analysis reports. The construction and important devices manufacturing shall be under the supervision of nuclear installation regulators and ship survey departments. In conclusion, National Nuclear Safety Administration (NNSA) and Maritime Safety Administration of the People’s Republic of China (MSA) shall establish united supervisory system for SMR on sea in China. It is suggested that NNSA is in charge of the overall safety of a FNPP, while MSA is responsible of the ship survey. The operator shall undertake obligation of a FNPP and evaluate the ship cooperating with experienced agency. It is suggested that government departments build the mutual recognition agreement of safety review. It is better to solve the vague questions by coordination.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jinghan Zhang ◽  
Jun Zhao ◽  
Jiejuan Tong

Nuclear safety goal is the basic standard for limiting the operational risks of nuclear power plants. The statistics of societal risks are the basis for nuclear safety goals. Core damage frequency (CDF) and large early release frequency (LERF) are typical probabilistic safety goals that are used in the regulation of water-cooled reactors currently. In fact, Chinese current probabilistic safety goals refer to the Nuclear Regulatory Commission (NRC) and the International Atomic Energy Agency (IAEA), and they are not based on Chinese societal risks. And the CDF and LERF proposed for water reactor are not suitable for high-temperature gas-cooled reactors (HTGR), because the design of HTGR is very different from that of water reactor. And current nuclear safety goals are established for single reactor rather than unit or site. Therefore, in this paper, the development of the safety goal of NRC was investigated firstly; then, the societal risks in China were investigated in order to establish the correlation between the probabilistic safety goal of multimodule HTGR and Chinese societal risks. In the end, some other matters about multireactor site were discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document